Search results in Condensed Matter from PIRSA
Format results
-
-
Honeycomb lattice quantum magnets with strong spin-orbit coupling
Young-June Kim University of Toronto
-
Superconductivity and Charge Density Waves in the Clean 2D Limit
Adam Tsen Institute for Quantum Computing (IQC)
-
-
-
Low-energy electrodynamics of topological insulator thin films
Liang Wu University of California, Berkeley
-
Electron viscosity, current vortices and negative nonlocal resistance in graphene
Gregory Falkovich Weizmann Institute of Science
-
Spin liquids on kagome lattice and symmetry protected topological phase
Yin-Chen He Stony Brook University
-
Spinon freedom in quantum square ice
Stefanos Kourtis University of Sherbrooke
-
Emergent Coulombic criticality and Kibble-Zurek scaling in a topological magnet
Claudio Castelnovo University of Cambridge
-
Out of equilibrium analogues of symmetry protected topological phases of matter
Curt von Keyserlingk University of Birmingham
-
PSI 2015/2016 - Explorations in Condensed Matter - Lecture 4
Guifre Vidal Alphabet (United States)
-
Organic materials: all-in-one systems for Mott physics - Quantum criticality, preformed pairs and spin liquids
Kazushi Kanoda University of Tokyo
A many-body quantum system on the verge of instability between competing ground states exhibits emergent phenomena. Interacting electrons on triangular lattices are likely subjected to multiple instabilities in the charge and spin degrees of freedom, affording diverse phenomena related to the Mott physics. The molecular conductors are superior model systems for studying the Mott physics because of the designability and controllability of material parameters such as lattice geometry and bandwidth by chemical substitution and/or pressure. In this symposium, I first introduce the fundamentals of organic materials and then present various quantum manifestations that interacting electrons in triangular-lattice organics show under variable correlation on the verge of the Mott metal-insulator transition. The topics include i) the quantum criticality of the Mott transition revealed by the resistivity that obeys quantum-critical scaling, ii) the pseudo-gap-like behavior of the metallic state, which is found to originate from preformed Cooper pairs that persist up to twice as high as Tc, and iii) the spin liquid state that emerges in the Mott insulating state, depending on the lattice geometry. I may touch the recent finding on a doped triangular lattice that exhibits a possible BEC-to-BCS crossover in superconductivity. The work presented here was performed in collaboration with T. Furukawa, H. Oike, J. Ibuka, M. Urai, Y. Suzuki, K. Miyagawa (UTokyo), Y. Shimizu (Nagoya Univ.), M. Ito, H. Taniguchi (Saitama Univ.) and R. Kato (RIKEN) -
Honeycomb lattice quantum magnets with strong spin-orbit coupling
Young-June Kim University of Toronto
In recent years, there has been much interest in honeycomb lattice quantum magnets described by Kitaev-Heisenberg Hamiltonian. For example, honeycomb lattice iridates, such as Na2IrO3 and Li2IrO3 have been intensely scrutinized. Recently, we proposed that a 4d honeycomb magnet α-RuCl3 is a promising candidate material in which Kitaev physics could be studied. I will give an overview of the physics of alpha-RuCl3, and talk about recent experimental and theoretical advances. -
Superconductivity and Charge Density Waves in the Clean 2D Limit
Adam Tsen Institute for Quantum Computing (IQC)
We have recently demonstrated an experimental platform to isolate 2D materials that are unstable in the ambient environment. I will discuss our recent studies of the charge density wave compound 1T-TaS2 and superconducting 2H-NbSe¬ in the atomically thin limit, made possible using this technique. In TaS2, we uncover a new surface charge density wave transition that is distinct from that in the bulk layers, as well as demonstrate continuous electrical control over this phase transition. In NbSe2, a small perpendicular magnetic field induces a transition to a quantum metallic phase, the resistivity of which obeys a unique field-scaling consistent with that predicted for a Bose metal. These methods and experiments open new doors for the study of other correlated 2D systems in the immediate future. -
Disorder in spin liquids
Beyond their deceptively featureless ground states, spin liquids are particularly remarkable in the exotic nature of their (fractionalised and gauge charged) excitations. Quenched disorder can be instrumental in nucleating or localising defects with unusual properties, revealing otherwise hidden features of these topological many-body states. This talk discusses how to turn the nuisance of disorder into a powerful probe and origin of new collective behaviour. -
Sudden expansion and domain wall melting in clean and disordered optical lattices
Johannes Hauschild Max Planck Institute
We numerically investigate the expansion of clouds of hard-core bosons in a 2D square lattice using a matrix-product state based method. This non-equilibrium setup is induced by quenching a trapping potential to zero and is specifically motivated by an experiment with ultracold atoms [1]. As the anisotropy for hopping amplitudes in different spatial directions is varied from 1D to 2D, we observe a crossover from a fast ballistic expansion in the 1D limit to much slower dynamics in the isotropic 2D lattice [2].
Introducing a site-dependent disorder potential allows to study many body localization (MBL). In a very recent experiment, the melting of a domain wall gave evidence for an MBL transition in 2D [3]. We study 1D and quasi-1D models, for which the phase diagram in the presence of disorder is known, such as the Anderson insulator, Aubry-Andre model and interacting fermions in 1D and on a two-leg ladder [4]. By considering several observables, we demonstrate that the domain wall melting can indeed yield quantitative information on the transition from an ergodic to the MBL phase as a function of disorder.
[1] J. P. Ronzheimer et al., PRL 110, 205301 (2013) [2] J. Hauschild et al., PRA 92, 053629 (2015) [3] J. Choi et al., arXiv:1604.04178 (2016) [4] J. Hauschild et al., in preparation
-
Low-energy electrodynamics of topological insulator thin films
Liang Wu University of California, Berkeley
Topological insulators (TIs) are a recently discovered state of matter characterized by an “inverted” band structure driven by strong spin-orbit coupling. One of their most touted properties is the existence of robust "topologically protected" surface states. I will discuss what topological protection means for transport experiments and how it can be probed using the technique of time-domain THz spectroscopy applied to thin films of Bi2Se3. By measuring the low frequency optical response, we can follow their transport lifetimes as we drive these materials via chemical substitution through a quantum phase transition into a topologically trivial regime[1]. I will then discuss our work following the evolution of the response as a function of magnetic field from the semi-classical transport regime[2] to the quantum regime[3]. In the semi-classical regime, an anomalous increase of the transport scattering rate was observed at high field, which contribute from electron-phonon interaction[2]. In the highest quality samples[3,4], we observe a continuous crossover from a low field regime where the response is given by semi-classical transport and observed in the form of cyclotron resonance to a higher field quantum regime[3]. In the later case, we find evidence for Faraday and Kerr rotation angles quantized in units of the fine structure constant[3]. This quantized rotation angle can be seen as evidence for a novel magneto-electric of the TI’s surface e.g. the much heralded axion electrodynamics of topological insulators. Among other aspects this give a purely solid-state measure of fine structure constant[3].
1. Wu, et al, Nat. Phys. 9, 410 (2013).
2. Wu, et al, Phy. Rev. Lett. 115, 217602 (2015).
3. Wu, et al, arXiv. 1603.04317 (2016)
4. Nikesh, et al, Nano. Lett. 15, 8245 (2015)
-
Electron viscosity, current vortices and negative nonlocal resistance in graphene
Gregory Falkovich Weizmann Institute of Science
Quantum-critical strongly correlated electron systems are predicted to feature universal collision-dominated transport resembling that of viscous fluids. Investigation of these phenomena has been hampered by the lack of known macroscopic signatures of electron viscosity. Here we identify vorticity as such a signature and link it with a readily verifiable striking macroscopic DC transport behavior. Produced by the viscous flow, vorticity can drive electric current against an applied field, resulting in a negative nonlocal voltage. The latter may play the same role for the viscous regime as zero electrical resistance does for superconductivity. Besides offering a diagnostic which distinguishes viscous transport from ohmic currents, the sign-changing electrical response affords a robust tool for directly measuring the viscosity-to-resistivity ratio. Strongly interacting electron-hole plasma in high-mobility graphene affords a unique link between quantum-critical electron transport and the wealth of fluid mechanics phenomena.
Levitov and Falkovich, Nature Physics, 22 Feb 2016
-
Spin liquids on kagome lattice and symmetry protected topological phase
Yin-Chen He Stony Brook University
In my talk I will introduce the spin liquid phases that occur in kagome antiferromagnets, and discuss their physical origin that are closely related with the newly discovered symmetry protected topological phase (SPT). I will first present our numerical (DMRG) study on the kagome XXZ spin model that exhibits two distinct spin liquid phases, namely the chiral spin liquid and the kagome spin liquid (the groundstate of the nearest neighbor kagome Heisenberg model). Both phases extend from the extreme easy-axis limit, through
SU(2) symmetric point, to the pure easy-plane limit. The two phases are separated by a continuous phase transition. Motivated by these numerical results, I will then focus on the easy-axis kagome spin system, and reformulate it as a lattice gauge model. Such formulation enables us to achieve a controlled theoretical description for the spin liquid phases. We then show that the chiral spin liquid is indeed a gauged U(1) SPT phase. On the other hand, we also propose that the kagome spin liquid is a critical spin liquid phase, which can be considered as a gauged deconfined critical point between a SPT and a superfluid phase.
-
Spinon freedom in quantum square ice
Stefanos Kourtis University of Sherbrooke
Recent theoretical and experimental efforts have been focused on the identification of excitations in quantum spin ice. Due to their relation to the magnetic monopoles of classical spin ice, their quantum counterparts, called spinons, are a highly sought-after manifestation of fractionalization in frustrated quantum magnets like Yb2Ti2O7. Of particular current interest is the quantum dynamics of spinons, namely, their modes of propagation and interaction with the strongly correlated spin background. To investigate this dynamics, we study excited quantum square ice, as captured by the spin-1/2 checkerboard-lattice XXZ model. We formulate effective free-spinon theories in the strong Ising coupling limit, with spinons either deconfined or artificially confined to nearest-neighbor distance, and calculate the corresponding approximate dynamic spin-structure factors (DSFs). We then evaluate the DSF of the fully interacting model exactly for clusters of up to 72 sites. The resulting spectra allow us to identify dispersive fingerprints of coherent spinon propagation in the correlated ``vacuum'' of quantum square ice within an extended low-energy regime. We thus provide unbiased evidence for the formation of coherent quasiparticles in quantum spin ice above the Ising gap.
-
Emergent Coulombic criticality and Kibble-Zurek scaling in a topological magnet
Claudio Castelnovo University of Cambridge
When a classical system is driven through a continuous phase transition, its nonequilibrium response is universal and exhibits Kibble-Zurek scaling. We explore this dynamical scaling in the context of a three-dimensional topological magnet with fractionalized excitations, namely, the liquid-gas transition of the emergent mobile magnetic monopoles in dipolar spin ice. Using field-mixing and finite-size scaling techniques, we place the critical point of the liquid-gas line in the three-dimensional Ising universality class. We then demonstrate Kibble-Zurek scaling for sweeps of the magnetic field through the critical point. Unusually slow microscopic time scales in spin ice offer a unique opportunity to detect this universal nonequilibrium physics within current experimental capability.
-
Out of equilibrium analogues of symmetry protected topological phases of matter
Curt von Keyserlingk University of Birmingham
Recent work suggests that a sharp definition of `phase of matter' can be given for some quantum systems out of equilibrium---first for many-body localized systems with time independent Hamiltonians and more recently for periodically driven or Floquet localized systems. We present a new family of driven localized Floquet phases, which are analogues of the 1d symmetry protected topological phases familiar from the equilibrium setting. We then propose a classification for such phases.
-
PSI 2015/2016 - Explorations in Condensed Matter - Lecture 4
Guifre Vidal Alphabet (United States)