Search results
Format results
-
Talk
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics
-
-
Talk
-
Opening Remarks
-
Katie Mack Perimeter Institute
-
Aaron Vincent Queen's University
-
-
Dark and visible structures with dissipative dark matter
Sarah Shandera Pennsylvania State University
-
-
-
The First Stars in the Universe as Dark Matter Laboratories
Cosmin Ilie Colgate University
-
Probing Atomic Dark Matter using Simulated Galactic Subhalo Populations
Caleb Gemmell University of Toronto
-
Dark matter at high redshifts with JWST
Julian Munoz The University of Texas at Austin
-
(Dark) Baryogenesis through Asymmetric Reheating in the Mirror Twin Higgs.
Andrija Rasovic University of Toronto
-
-
Talk
-
-
Talk
-
Quantum Field Theory for Cosmology - Lecture 20240404
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240402
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240328
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240326
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240321
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240319
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240314
Achim Kempf University of Waterloo
-
Quantum Field Theory for Cosmology - Lecture 20240312
Achim Kempf University of Waterloo
-
-
Talk
-
-
Talk
-
-
Talk
-
-
Talk
-
-
Talk
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
Quantum Foundations Lecture
Lucien Hardy Perimeter Institute for Theoretical Physics
-
-
Talk
-
-
Talk
-
Statistical Physics Lecture - 121223
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23120015 -
Statistical Physics Lecture - 121123
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23120014 -
Statistical Physics Lecture - 120623
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23120012 -
Statistical Physics Lecture - 120523
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23120013 -
Statistical Physics Lecture - 120423
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23120011 -
Statistical Physics Lecture - 120123
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23120010 -
Statistical Physics Lecture - 112923
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23110033 -
Statistical Physics Lecture - 112723
Emilie Huffman Perimeter Institute for Theoretical Physics
PIRSA:23110032
-
-
Cosmology 2023/24
This Cosmology course will provide a theoretical overview of the standard cosmological model.
Topics will include: FRW universe, Thermal History, Inflation, Cosmological Perturbation Theory, Structure Formation and Quantum Initial Conditions. -
Dark Matter, First Light
New observational programs and techniques are opening a window to the first galaxies in the universe and bringing surprises along the way. In this workshop, we'll explore how dark matter phenomenology may have impacted the first stars and galaxies, focusing on how improved modeling and simulations can allow us to use new and upcoming high-redshift data to gain insight into dark matter's fundamental nature.
Sponsored in part by:
-
Advanced General Relativity (PHYS7840)
Review of elementary general relativity. Timelike and null geodesic congruences. Hypersurfaces and junction conditions. Lagrangian and Hamiltonian formulations of general relativity. Mass and angular momentum of a gravitating body. The laws of black-hole mechanics.
Zoom: https://pitp.zoom.us/j/97183751661?pwd=T0szNnRjdUM2dENYNTdmRmJCZVF1QT09
-
Quantum Field Theory for Cosmology (PHYS785/AMATH872)
This course introduces quantum field theory from scratch and then develops the theory of the quantum fluctuations of fields and particles. We will focus, in particular, on how quantum fields are affected by curvature and by spacetime horizons. This will lead us to the Unruh effect, Hawking radiation and to inflationary cosmology. Inflationary cosmology, which we will study in detail, is part of the current standard model of cosmology which holds that all structure in the universe - such as the distribution of galaxies - originated in tiny quantum fluctuations of a scalar field and of space-time itself. For intuition, consider that quantum field fluctuations of significant amplitude normally occur only at very small length scales. Close to the big bang, during a brief initial period of nearly exponentially fast expansion (inflation), such small-wavelength but large-amplitude quantum fluctuations were stretched out to cosmological wavelengths. In this way, quantum fluctuations are thought to have seeded the observed inhomogeneities in the cosmic microwave background - which in turn seeded the condensation of hydrogen into galaxies and stars, all closely matching the increasingly accurate astronomical observations over recent years. The prerequisites for this course are a solid understanding of quantum theory and some basic knowledge of general relativity, such as FRW spacetimes.
https://uwaterloo.ca/physics-of-information-lab/teaching/quantum-field-theory-cosmology-amath872phys785-w2024
https://pitp.zoom.us/j/96567241418?pwd=U3I1V1g4YXdaZ3psT1FrZUdlYm1zdz09
-
-
Mathematical Physics - Core 2023/24
This course will introduce you to some of the geometrical structures underlying theoretical physics. Previous knowledge of differential geometry is not required. Topics covered in the course include: Introduction to manifolds, differential forms, symplectic manifolds, symplectic version of Noether’s theorem, integration on manifolds, fiber bundles, principal bundles and applications to gauge theory.
-
Standard Model 2023/24
The Standard Model of particle physics is introduced, and reviewed, from a modern effective field theory perspective.
-
Gravitational Physics
The Gravitational Physics course takes your knowledge and practice of gravity to the next level. We start by recapping the essential elements of differential geometry, adding some new techniques to the toolbox, then apply some of these methods to learning about submanifolds, extra dimensions, and black hole thermodynamics. Towards the end of the course, we delve into the frontiers, with a sample of recent research topics.
-
-
Quantum Field Theory 2 2023/24
Quantum Field Theory 2 2023/24 -