3d field theories with N=2 supersymmetry play a special role in the evolving web of connections between geometry and physics originating in the 6d (2,0) theory. Specifically, these 3d theories are associated to 3-manifolds M, and their vacuum structure captures the geometry of local systems on M. (Sometimes M arises as a cobordism between two surfaces C, C', in which case the 3d theories encode some functorial relation between the geometry of Hitchin systems on C and C'.) I would like to explain some of the mathematics of 3d N=2 theories. In particular, I would like to explain how Hilbert spaces in these theories arise as Dolbeault cohomology of certain moduli spaces of bundles. One application is a homological interpretation of the "pentagon relation" relating flips of triangulation on a surface.