PIRSA:12060043

Relativistic Quantum Information anRelativistic Quantum Optics: towards experiments to reveal quantum effects provoked by gravity

APA

Martin-Martinez, E. (2012). Relativistic Quantum Information anRelativistic Quantum Optics: towards experiments to reveal quantum effects provoked by gravity. Perimeter Institute for Theoretical Physics. https://pirsa.org/12060043

MLA

Martin-Martinez, Eduardo. Relativistic Quantum Information anRelativistic Quantum Optics: towards experiments to reveal quantum effects provoked by gravity. Perimeter Institute for Theoretical Physics, Jun. 26, 2012, https://pirsa.org/12060043

BibTex

          @misc{ scivideos_PIRSA:12060043,
            doi = {10.48660/12060043},
            url = {https://pirsa.org/12060043},
            author = {Martin-Martinez, Eduardo},
            keywords = {},
            language = {en},
            title = {Relativistic Quantum Information anRelativistic Quantum Optics: towards experiments to reveal quantum effects provoked by gravity},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2012},
            month = {jun},
            note = {PIRSA:12060043 see, \url{https://scivideos.org/pirsa/12060043}}
          }
          

Eduardo Martin-Martinez Institute for Quantum Computing (IQC)

Talk numberPIRSA:12060043
Source RepositoryPIRSA
Talk Type Conference

Abstract

We will explore different results on  relativistic quantum information and general relativistic quantum optics whose aim is to provide scenarios where relativistic quantum effects can be experimentally accessible. Traditionally, relativistic quantum information has been far away from the experimental test, but the discipline is close to the transition point where experimental outcomes will soon arise. Not only to bestow experimental proof on long ago predicted but still undetected phenomena (such as the Unruh and Hawking effects), but also to provide insight into the relationship of general relativity  and quantum theory, and to serve as a  source of new quantum technologies.
We will show how it is possible to extract timelike and  spacelike quantum correlations from the vacuum state of the field in a tabletop experiment, and how to use it to build a quantum memory. We will see how geometric phases can help to detect the Unruh effect and how to use what we learn from that setting to build a quantum thermometer. Finally we will discuss how quantum simulators can be applied to the study of quantum effects of gravity, and used to predict experimental scenarios way beyond current computational power of classical computers.