Format results
-
Welcome and Opening Remarks
Anna Heffernan University of the Balearic Islands
-
Self force review
Maarten van de Meent Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
-
Discontinuous collocation methods and self-force applications
Charalampos Markakis Queen Mary University of London
-
Conformal numerical method for self force applications in the time domain
Lidia Joana Gomes Da Silva Queen Mary University of London
-
Kerr self-force via elliptic PDEs: Background and theory (part 1)
Nami Nishimura State University of New York (SUNY)
-
Kerr self-force via elliptic PDEs: Numerical methods (part 2)
Thomas Osburn State University of New York (SUNY)
-
A multi-mode time-domain surrogate model for gravitational wave signals from comparable to extreme mass-ratio black hole binaries
Tousif Islam University of Massachusetts Dartmouth
-
Fast Self-Forced Inspirals into a Rotating Black Hole
Philip Lynch National University of Ireland
-
Improving Semi-Analytic Spin Precession with NITs
Michael LaHaye University of Guelph
-
Flux-balance laws in the Kerr spacetime
Alexander Grant University of Virginia
-
Self-consistent adiabatic inspiral and transition motion
Lorenzo Küchler Université Libre de Bruxelles
-
Progress in Green Function Methods for Extreme Mass Ratio Inspirals
Conor O'Toole National University of Ireland