PIRSA:23060052

The min-entropy of classical quantum combs and some applications

APA

Smith, I. (2023). The min-entropy of classical quantum combs and some applications. Perimeter Institute for Theoretical Physics. https://pirsa.org/23060052

MLA

Smith, Isaac. The min-entropy of classical quantum combs and some applications. Perimeter Institute for Theoretical Physics, Jun. 08, 2023, https://pirsa.org/23060052

BibTex

          @misc{ scivideos_PIRSA:23060052,
            doi = {10.48660/23060052},
            url = {https://pirsa.org/23060052},
            author = {Smith, Isaac},
            keywords = {Quantum Foundations},
            language = {en},
            title = {The min-entropy of classical quantum combs and some applications},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2023},
            month = {jun},
            note = {PIRSA:23060052 see, \url{https://scivideos.org/pirsa/23060052}}
          }
          

Isaac Smith Universität Innsbruck

Talk numberPIRSA:23060052
Source RepositoryPIRSA
Collection

Abstract

It is often the case that interaction with a quantum system does not simply occur between an initial point in time and a final one, but rather over many time steps. In such cases, an interaction at a given time step can have an influence on the dynamics of the system at a much later time. Just as quantum channels model dynamics between two time steps, quantum combs model the more general multi-time dynamics described above, and have accordingly found application in such fields as open quantum systems and quantum cryptography. In this talk, we will consider ensembles of combs indexed by a random variable, dubbed classical-quantum combs, and discuss how much can be learnt about said variable through interacting with the system. We characterise the amount of information gain using the comb min-entropy, an extension of the analogous entropic quantity for quantum states. With combs and the min-entropy in our toolbox, we turn to a number of applications largely inspired by Measurement-Based Quantum Computing (MBQC), including the security analysis of a specific Blind Quantum Computing protocol and some comments regarding learning causal structure.

Zoom Link: https://pitp.zoom.us/j/98315660866?pwd=cWU3RzB6SG9DOGIza1BqV1lqNklvQT09