PIRSA:08060190

Motivating outcome independence: locality versus sufficiency

APA

Uffink, J. (2008). Motivating outcome independence: locality versus sufficiency. Perimeter Institute for Theoretical Physics. https://pirsa.org/08060190

MLA

Uffink, Jos. Motivating outcome independence: locality versus sufficiency. Perimeter Institute for Theoretical Physics, Jun. 10, 2008, https://pirsa.org/08060190

BibTex

          @misc{ scivideos_PIRSA:08060190,
            doi = {10.48660/08060190},
            url = {https://pirsa.org/08060190},
            author = {Uffink, Jos},
            keywords = {Quantum Foundations},
            language = {en},
            title = {Motivating outcome independence: locality versus sufficiency},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2008},
            month = {jun},
            note = {PIRSA:08060190 see, \url{https://scivideos.org/pirsa/08060190}}
          }
          

Jos Uffink Utrecht University

Talk numberPIRSA:08060190
Source RepositoryPIRSA
Collection

Abstract

It is well known that the derivation of the Bell Inequality rests on two major assumptions, usually called outcome independence and parameter independence. Parameter independence seems to have a straightforward motivation: it expresses a non-signalling requirement between space-like separated sites and is thus motivated by locality. The status of outcome independence is much les clear. Many authors have argued that this assumption too expresses a locality requirement, in the form of a \'screening off\' condition. I will argue that the assumption also admits of an entirely different interpretation, suggested by the concept of sufficiency in the general theory of statistical inference. In this view, the assumption of outcome independence can be explained as expressing the idea that the specification of the hidden variable is sufficient, i.e. it exhausts all the relevant statistical information about the measurement outcomes. In this view, the assumption has no roots in locality at all. Rather, I would claim, it stems from the assumption that there exists such an exhaustive state description in our putative hidden variable theories.