PIRSA:12110095

Universal driven dynamics near phase transitions : Kibble-Zurek ramps with and without an order parameter

APA

Chandran, A. (2012). Universal driven dynamics near phase transitions : Kibble-Zurek ramps with and without an order parameter. Perimeter Institute for Theoretical Physics. https://pirsa.org/12110095

MLA

Chandran, Anushya. Universal driven dynamics near phase transitions : Kibble-Zurek ramps with and without an order parameter. Perimeter Institute for Theoretical Physics, Nov. 29, 2012, https://pirsa.org/12110095

BibTex

          @misc{ scivideos_PIRSA:12110095,
            doi = {10.48660/12110095},
            url = {https://pirsa.org/12110095},
            author = {Chandran, Anushya},
            keywords = {Quantum Matter},
            language = {en},
            title = {Universal driven dynamics near phase transitions : Kibble-Zurek ramps with and without an order parameter},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2012},
            month = {nov},
            note = {PIRSA:12110095 see, \url{https://scivideos.org/pirsa/12110095}}
          }
          

Anushya Chandran Perimeter Institute for Theoretical Physics

Talk numberPIRSA:12110095
Source RepositoryPIRSA
Collection

Abstract

Near a critical point, the equilibrium relaxation time of a system diverges and any change of control parameters leads to non-equilibrium behavior. The Kibble-Zurek (KZ) problem is to determine
the evolution of the system when the change is slow. In this talk, I will introduce a non-equilibrium scaling limit in which these evolutions are universal and define a KZ universality classification with exponents and scaling functions. I will illustrate the physics accessible in this
scaling limit in simple classical and quantum model theories with symmetry-breaking transitions.

I will then turn to the KZ problem near quantum phase transitions without a local order parameter.
First, I will introduce the necessary background through the example of the Ising gauge  theory/generalized toric code. Using duality and the scaling theory developed in the first part of the talk, I will then argue that the late time dynamics exhibits a slow coarsening of the string-net
that is condensed in the starting topologically ordered state. I will also discuss a time dependent amplification of the energy splitting between topologically degenerate states on closed manifolds and the dangerous irrelevance of gapped modes. Finally, I will extend these ideas to the non-abelian SU(2)_k ordered phases of the relevant Levin-Wen models.