ICTS:29460

Solvable drives in Conformal field theories

APA

(2024). Solvable drives in Conformal field theories. SciVideos. https://youtu.be/UIBZXbWLYqg

MLA

Solvable drives in Conformal field theories. SciVideos, Aug. 29, 2024, https://youtu.be/UIBZXbWLYqg

BibTex

          @misc{ scivideos_ICTS:29460,
            doi = {},
            url = {https://youtu.be/UIBZXbWLYqg},
            author = {},
            keywords = {},
            language = {en},
            title = {Solvable drives in Conformal field theories},
            publisher = {},
            year = {2024},
            month = {aug},
            note = {ICTS:29460 see, \url{https://scivideos.org/icts-tifr/29460}}
          }
          
Diptarka Das
Talk numberICTS:29460

Abstract

We consider a class of exactly solvable Hamiltonian deformations of Conformal Fields Theories (CFTs) in arbitrary dimensions. The deformed Hamiltonians involve generators which form a SU(1,1) subalgebra. The Floquet and quench dynamics can be computed exactly. The CFTs exhibit distinct heating and non-heating phases at late times characterized by exponential and oscillatory correlators as functions of time. When the dynamics starts from a homogenous state, the energy density is shown to localize spatially in the heating phase. The set-ups considered will involve step pulses of different Hamiltonians, but can be generalized to smooth drives. In low dimensions we verify our results with lattice numerics.