Video URL
Minimal Area from Entangled MatricesMinimal Area from Entangled Matrices
APA
(2024). Minimal Area from Entangled Matrices. SciVideos. https://youtu.be/g0KXLvkP3ic
MLA
Minimal Area from Entangled Matrices. SciVideos, Aug. 26, 2024, https://youtu.be/g0KXLvkP3ic
BibTex
@misc{ scivideos_ICTS:29412, doi = {}, url = {https://youtu.be/g0KXLvkP3ic}, author = {}, keywords = {}, language = {en}, title = {Minimal Area from Entangled Matrices}, publisher = {}, year = {2024}, month = {aug}, note = {ICTS:29412 see, \url{https://scivideos.org/icts-tifr/29412}} }
Abstract
We define a relational notion of a subsystem in theories of matrix quantum mechanics and show how the corresponding entanglement entropy can be given as a minimisation, exhibiting many similarities to the Ryu-Takayanagi formula. Our construction brings together the physics of entanglement edge modes, noncommutative geometry and quantum internal reference frames, to define a subsystem whose reduced state is (approximately) an incoherent sum of density matrices, corresponding to distinct spatial subregions. We show that in states where geometry emerges from semiclassical matrices, this sum is dominated by the subregion with minimal boundary area. As in the Ryu-Takayanagi formula, it is the computation of the entanglement that determines the subregion. We find that coarse-graining is essential in our microscopic derivation, in order to control the proliferation of highly curved and disconnected non-geometric subregions in the sum.