Video URL
https://pirsa.org/23050138Homological Link Invariants from Floer Theory
APA
LePage, E. (2023). Homological Link Invariants from Floer Theory. Perimeter Institute for Theoretical Physics. https://pirsa.org/23050138
MLA
LePage, Elise. Homological Link Invariants from Floer Theory. Perimeter Institute for Theoretical Physics, May. 11, 2023, https://pirsa.org/23050138
BibTex
@misc{ scivideos_PIRSA:23050138,
doi = {10.48660/23050138},
url = {https://pirsa.org/23050138},
author = {LePage, Elise},
keywords = {Mathematical physics},
language = {en},
title = {Homological Link Invariants from Floer Theory},
publisher = {Perimeter Institute for Theoretical Physics},
year = {2023},
month = {may},
note = {PIRSA:23050138 see, \url{https://scivideos.org/pirsa/23050138}}
}
Abstract
In recent work, Aganagic proposed a categorification of quantum link invariants based on a category of A-branes, which is solvable explicitly. The theory is a generalization of Heegaard-Floer theory from gl(1|1) to arbitrary Lie algebras. I will describe in the detail the two simplest cases: the su(2) theory, categorifying the Jones polynomial, and the gl(1|1) theory, categorifying the Alexander polynomial. I will give an explicit algorithm for computing link homologies in these cases. I will also briefly describe the generalization to other simple Lie algebras and to Lie superalgebras of type gl(m|n). This talk is based on work to appear with Mina Aganagic and Miroslav Rapcak.
Zoom Link: TBD