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In the years 1999-2003 evidence accumulated that
classical open string field theory (OSFT) gives at least
a partial description of the open string landscape:

Numerical solutions of the equations of motion

QΨ + Ψ ∗ Ψ = 0 .

show that OSFT encodes many backgrounds:

– The tachyon vacuum background

– Lower-codimension branes as solutions.

– Backgrounds related by marginal deformations.

To make progress towards a complete formulation of
(open) string theory, analytic solutions were desired
but not available.
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In November 2005, Martin Schnabl (Cern) found an
analytic tachyon vacuum solution [hep-th/0511286].

Ln Virasoro operators refer to the ξ-frame.

L0 has a simple interpretation in the strip frame.

L0 ≡ L in the sliver frame is simple. It corresponds to a
linear combination of ξ-frame Virasoros.
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BΨ = 0 Schnabl gauge

B is the antighost zero mode in the sliver frame:

B ≡
∮

dz

2πi
zb(z) =

∮
dξ

2πi

f(ξ)

f ′(ξ)
b(ξ) ,

→ B = b0 +
2

3
b2 − 2

15
b4 +

2

35
b6 − . . .

The relevant string fields are dressed surface states |Σ〉

Using test (Fock) states φi, we define the surface
states by the correlator

〈Σ|φi〉 = 〈f ◦ φi(0) O1O2 . . .B . . .On〉

The test states are inserted using f(ξ) to map them
from ξ = 0 to the surface.
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The tachyon vacuum solution is written in terms of
states ψα and their derivatives ψ′

α = dψα

dα
:

B =

∫
dz

2πi
b(z)

Ψ = lim
N→∞

[
−ψN
︸ ︷︷ ︸
phantom

+

N∑

n=0

ψ′
n

︸ ︷︷ ︸
ordinary

]

The “ordinary” piece suffices for a weak solution:

〈fi , QΨ + Ψ ∗ Ψ〉 = 0, for all Fock states fi

The “phantom” piece is needed for a strong solution
(Okawa, Fuchs and Kroyter):

〈Ψ , QΨ + Ψ ∗ Ψ〉 = 0 .
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In Strings 06 Schnabl presented this solution, and
evidence that there are no physical open string states
at the tachyon vacuum.

Progress this year:

1. Different projectors and different gauges.

Okawa, Rastelli, and Zwiebach (hep-th/0611110)

2. New solution for (regular) marginal deformations.

Schnabl (hep-th/0701248) and Kiermaier, Okawa, Rastelli,

and Zwiebach (hep-th/0701249)

3. New solution for Superstring (regular) marginal
deformations.

Erler (arXiv:0704.0930) , Okawa (arXiv:0704.0936,
arXiv:0704.3612)

4. Towards new solutions with general marginal
deformations

Fuchs, Kroyter, and Potting (arXiv:0704.2222) , Fuchs and

Kroyter (arXiv:0706.0717), Kiermaier and Okawa (to

appear).

5. Off-shell amplitudes and string diagrams.

Fuji, Nakayama, Suzuki (hep-th/0609047) Rastelli and B.
Z., to appear.
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Key structures.

The structure needed to build the solution is an abelian
family of wedge states Wα associated the sliver frame:
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Just like for B:

L ≡
∮

dξ

2πi

f(ξ)

f ′(ξ)
T(ξ) =

∮
dξ

2πi
(1 + ξ2) tan−1 ξ T(ξ)

L = L0 +
2

3
L2 − 2

15
L4 +

2

35
L6 − . . .

L⋆ = L0 +
2

3
L−2 − 2

15
L−4 +

2

35
L−6 − . . .

[L ,L⋆ ] = L+ L⋆ ≡ L+

⋆ is BPZ conjugation.

The operator L+ has a decomposition into commuting
left and right parts L+ = L+

L + L+
R .

|Wα〉 = e−αL
+

L |I〉 .
One can show that

−L+
L =

∫
dz

2πi
T(z) ≡ L

−B+
L =

∫
dz

2πi
b(z) ≡ B

L changes width, B is the associated antighost .
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Different projectors and different gauges.
Okawa, Rastelli, and Zwiebach (hep-th/0611110)

All surface states are related by midpoint preserving
reparameterizations (symmetries of the star product)

The conformal map f : Σ → Σ′, uniquely determined by
preserving A,Q, and B induces the reparameterization
of the open string.

This applies to projectors: the sliver and the butterfly
are related by reparameterizations (f = z2). Obtain
wedge-like states for the butterfly:
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Self-reparameterizations of the sliver actually act on
the wedge states.

Obtain a β-deformation of Schnabl’s sliver solution.

For any projector, the gauge condition is

BΨ = 0

where B is the zero mode of b(z) in the conformal
frame of the projector.

Upon β deformation the gauge condition is

(
B +

1

2
(e2β − 1)(B +B⋆)

)
Ψ = 0

Level expansion can be carried out explicitly for special
projectors, those for which

[
L0 , L⋆0

]
= s(L0 + L⋆0)

with s ≥ 1 a parameter (butterfly is s = 2).
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Solution for (regular) marginal deformations

Schnabl (hep-th/0701248) and Kiermaier, Okawa, Rastelli, and

Zwiebach (hep-th/0701249)

For any dimension one matter primary V

Ψ(1) = cV (0)|0〉
is BRST closed:

QΨ(1) = 0 .

If V is exactly marginal, expect a solution

Ψλ =

∞∑

n=1

λnΨ(n) , λ ∈ R

The EOM QΨλ + Ψλ ∗ Ψλ = 0 gives

QΨ(n) = Φ(n) , Φ(n) = −
n−1∑

k=1

Ψ(n−k) ∗ Ψ(k) .

Needed: Φ(n) must be BRST exact for all n > 1.

It is guaranteed to be closed, but it should be exact if
V is exactly marginal.
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In Siegel gauge solve

QΨ(n) = Φ(n) → Ψ(n) =
b0

L0

Φ(n).

Ψ(n) = b0

∫ ∞

0

dte−tL0Φ(n).

In practice get a nested set of star products and
operators b0/L0, whose Schwinger representation
generates extremely complicated Riemann surfaces

Cannot do the conformal map to the UHP.

Cannot evaluate integrand in closed form.
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Solve with wedges in BΨ = 0 gauge

QΨ(1) = 0 , BΨ(1) = 0 , LΨ(1) = 0 .

QΨ(2) = −Ψ(1) ∗ Ψ(1) → Ψ(2) = −B
L

(Ψ(1) ∗ Ψ(1))

〈φ,Ψ(2) 〉 =

∫ 1

0

dt 〈 f ◦ φ(0) cV (1)B cV (1 + t) 〉W1+t
.

As t→ 0 collision. At t = 1 maximum separation.

〈φ,QBΨ
(2) 〉 = −

∫ 1

0

dt 〈 f ◦ φ(0) cV (1)L cV (1 + t) 〉W1+t ,

= −
∫ 1

0

dt
∂

∂t
〈 f ◦ φ(0) cV (1) cV (1 + t) 〉 = −Ψ(1) ∗ Ψ(1) ,

IFF

limt→0 cV (0) cV (t) = 0.
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To n-th order one gets a REMARKABLY simple
formula

〈φ,Ψ(n) 〉 =

∫ 1

0

dt1

∫ 1

0

dt2 . . .

∫ 1

0

dtn−1

〈
f ◦ φ(0) cV (1)

n−1∏

i=1

[
B cV (1 + ℓi)

] 〉

W1+ℓn−1

.

ℓi ≡
i∑

k=1

tk ,
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Rolling Tachyon Solution

Perturb the unstable D-brane BCFT with

V (y) = e
1√
α′
X0(y)

V is exactly marginal and has regular OPE

V (y)V (0) ∼ |y|2V (0)2 ,

Deformation by cV represents a tachyon rolling from
the perturbative vacuum at x0 = −∞

Ψ(1) = e
1√
α′
X0(0)

c1|0〉 ,
Shifting time, the profile is

T(x0) = ∓ e
1√
α′
x0

+

∞∑

n=2

(∓1)nβn e
1√
α′
nx0

.

A calculation gives:

βn+1 = 2

∫
dnt (2 + ℓn)

−n(n+3)

(
g′0

2 + ℓn
− g0

)

· g
2
0

g′0
2

[ n∏

i=0

g′i

g2(n+1)
i

] ∏

0≤i<j≤n

(
gi − gj

)2
.

g(z) =
1

2
tan(πz) , gi ≡ g

(
1 + ℓi

2 + ℓn

)
, ℓ0 ≡ 0 .
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All βn coefficients are positive.

T (x0) = ∓ e
1√
α′
x0

+ 0.15206 e
1√
α′

2x0

∓ 2.148 · 10−3 e
1√
α′

3x0

+ 2.619 · 10−6 e
1√
α′

4x0

∓ 2.791 · 10−10 e
1√
α′

5x0

+ 2.801 · 10−15 e
1√
α′

6x0

∓ 2.729 · 10−21 e
1√
α′

7x0

+ . . .

Top sign: the tachyon rolls towards the tachyon
vacuum, it overshoots it, and then begins to perform
larger and larger oscillations.

There is good numerical evidence that the series is

ABSOLUTELY CONVERGENT

The oscillations are real !

Consistent with earlier work of Moeller and BZ (2003), as well as
Coletti et.al (2005).

Possible interpretation discussed by Ellwood (arXiv:0705.0013)
and Jokela, Jarvinen, Keski-Vakkuri, Majumder (arXiv:0705.1916)
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Marginals with singular OPE’s

Use a point-splitting regulator and counterterms to
construct solutions to quadratic and cubic order.
Closed-form solutions were lacking.

Interesting solution by Fuchs, Kroyter and Potting for
the case of V = i∂X

Kiermaier and Okawa (to appear) have a general
proposal:

1. Use fixed wedges and moving vertex operators to

write solutions Ψ
(n)
L and Ψ

(n)
R that are complex

conjugates of each other:

2. Construct a power-series for a (large) gauge

parameter U that relates Ψ
(n)
L and Ψ

(n)
R .

3. The real solution is obtained by transforming ΨL

by a gauge transformation with
√
U .

4. The renormalization can be incorporated in U and
ΨL if certain (expected) formal properties hold.
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Off-shell amplitudes and string diagrams.

Fuji, Nakayama, Suzuki (hep-th/0609047) Rastelli, B.Z., to
appear.

The propagator in BΨ = 0 gauge is not B/L. It is
(Schnabl)

P ≡ B

L
Q
B⋆

L⋆
.

With a C such that C2 = 0 and {B,C} = 1 , P = BC , is a
projector to the gauge slice. The kinetic term K on the slice is

1

2
〈PΨ, QPΨ〉 =

1

2
〈Ψ, P ⋆QP︸ ︷︷ ︸

K

Ψ〉 , K = C⋆B⋆QBC .

The above P satisfies PK = P .

Aim to find the general Feynman rules and their
geometrical pictures.

Puzzling aspect of P: Each line seems to carry two
modular parameters. Physically we know only one is
relevant.
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Use

P ≡ B

L
Q
B⋆

L⋆
=
B

L
− B

L

B⋆

L⋆
Q

For a four string amplitude

F4 =
〈
Ψ1 ∗ Ψ2,P

(
Ψ3 ∗ Ψ4

)〉

=
〈
Ψ1 ∗ Ψ2,

B

L

(
Ψ3 ∗ Ψ4

)〉

−
〈B⋆

L⋆

(
Ψ1 ∗ Ψ2

)
,
B⋆

L⋆

(
QΨ3 ∗ Ψ4 − Ψ3 ∗QΨ4

)〉

To evaluate these and other general amplitudes need
to learn how to act with B/L and B⋆/L⋆ on
star-products of general states:
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B/L action on A1 ∗A2

B⋆/L⋆ action on A1 ∗A2
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F(1)
4 = (2π)Dδ

(∑
pi

)∫ 1/2

0

dλλ−α
′s−2(1 − λ)−α

′t−2 M(λ, pi)

M(λ, pi) =

[ π(1 − λ)−1
(

3
4
− λ)

1
2

sin−1[(1 − λ)−1
(

3
4
− λ)1/2]

]4−α′
∑

p2
i

·
(
λ

t

)2−α′(p2
4
+p2

3
)

· (1 − λ)2−α′(p2
1
+p2

2
)

Where: 4 sin2

[
π

3 + t

]
=

3 − 4λ

1 − λ
.

On-shell, M = 1.

The full amplitude requires the addition of the t-channel. One
cannot integrate over λ ∈ [0,1] since M develops a singularity at
λ = 3/4 (because even for t→ ∞ one only reaches there).
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F(2)
4 = − (2π)26δ

(∑
pi

)
1

π

(
2

π

)α′
∑

p2
i
−4

(α′(p23 + p24)− 2)

·
∫

M̂2

dt1dt2 γ
2 (γt2)

α′(p2
1
+p2

2
)−2 (γt1)

α′(p2
3
+p2

4
)−2

· (cos(γt2) + cos(γt1))

(
γ cos(γt1)−

sin(γt1)

t1

)

·
[
sin(γt1)

]−α′(s+p2
3
+p2

4
) ·

[
sin γ

]−α′(2t+
∑

p2
i
)

·
[
sin(γ(t1 + 1))

]α′(2s+2t+
∑

p2
i
) ·

[
sin(γt2)

]−α′(s+p2
1
+p2

2
)
.

γ =
π

2 + t1 + t2
, M̂2 ≡ {t1, t2 |0 ≤ t1 ≤ 1,0 ≤ t2 ≤ 1 , t1 + t2 ≥ 1} .

Off-shell amplitudes are not simply integrals of suitable forms
over moduli space.
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On-shell 5 point functions do not require double
moduli parameters on any lines

For on-shell six-point amplitudes at least one line must
have the full P

There may not be a theorem that each surface is
produced only once – but the physical requirement of
decoupling of trivial states will hold.
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Loop amplitudes?

Not clear how the Feynman rules can create regular
surfaces.

Difficulties with the fact that for an internal
propagator there is no midpoint line
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Conclusions

• Schnabl gauge is a projector gauge.

• Deformations by marginal operators with regular
operator products are truly simple. Describe
D-brane decay. Interpretation remains puzzling.

• Progress for regular superstring marginals, and for
marginal operators with singular operator
products.

• Some understanding the novel properties of
off-shell amplitudes in this gauge.

Despite this, the lessons from the development have
not yet been fully absorbed.

• Missing superstring tachyon vacuum.

• Missing lump solutions (D-branes as solitons)

• Some truly new solutions.

• Implications for closed strings
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