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Three-dimensional pure quantum gravity,
with the Einstein-Hilbert action

has been studied from many points of view,
but its status is fundamentally unclear.

I will be making a highly tentative effort to
reconsider it. (thanks to J. Maldacena)



My main motivation for doing so is the BTZ
black hole. With negative cosmological
constant, there are black holes in 2+1
dimensions. Since pure gravity in 2+1
dimensions is “trivial,” i.e. it has no
propagating modes, we might hope to get
an exact description of the quantum theory
of these black holes. At least above 1+1
dimensions, where propagating modes
have complicated interactions, there is no
hope to get an equally precise black hole
model in a theory that is not “trivial.”



By power counting this theory appears
unrenormalizable,

but it is actually finite in perturbation theory
– modulo a field redefinition and a
renormalization of the cosmological
constant.



This is so for the same reason that the
theory is “trivial.” In 2+1 dimensions, the
Riemann tensor can be
expressed in terms of the Ricci tensor

which in turn, using Einstein’s equations,
can be expressed as a multiple of the
metric tensor So finally, on shell,
the only possible counter-term is the
volume of spacetime, that is, a
renormalization of the cosmological
constant.



What I have just said is valid regardless of
how one formulates perturbation theory,
but actually, there is a natural formulation
in which no renormalization or field
redefinition is needed.

This comes from the fact that classically,
2+1-dimensional gravity can be expressed
in terms of gauge theory. The spin
connection is an gauge
field. can be combined with the



“vierbein” to make a gauge field of
gauge group if the
cosmological constant is negative (and a
similar group otherwise). We just combine

and into a 4 x 4 matrix

As long as the vierbein is invertible, the
usual transformations under local Lorentz



transformations and diffeomorphisms
combine together as gauge
transformations of . This statement
actually has an analog in any dimension.
What is special in 2+1 dimensions is that
the Einstein-Hilbert action can be
expressed in a gauge-invariant form

as a Chern-Simons interaction.

(Achucarro and Townsend1987, EW 1988)



From this point of view, perturbation theory
is renormalizable by power counting, and
is actually finite, since there are no
possible local counterterms (and the
cosmological constant is a structure
constant of the gauge group).

It is pretty clear that the gauge theory
description of gravity is valid in
perturbation theory – since it is valid
classically – and perturbation theory will
not take us out of the classical region of
invertible vierbein.



But nonperturbatively there is a real
question, as in gauge theory we will have
to allow a non-invertible vierbein.

My own view in 1988 was that the gauge
theory description was correct
nonperturbatively, and one had to allow a
degenerate vierbein to make sense of the
quantum theory.

This view was criticized fairly convincingly,



especially by N. Seiberg, who argued that in
0+1 and 1+1 dimensions, where we do
know how to make sense of quantum
gravity, we take seriously the invertibility of
the vierbein at the quantum level.

There is, however, an even more serious
problem with the idea “gauge
theory=gravity in 2+1 dimensions”



A few years after the developments I have
mentioned, it was found that for the case
of negative cosmological constant, there is
a black hole in this “trivial” theory

(Banados, Teitelboim, Zanelli, 1992)

and developments in the AdS/CFT
correspondence (beginning with
Strominger 1997) made it clear within a
few years that this should be taken
seriously.



The BTZ black hole has a horizon of positive
circumference and a corresponding
Bekenstein-Hawking entropy. If, therefore,
pure 2+1-dimensional gravity does
correspond to a quantum theory, this
theory ought to have a huge degeneracy
of black hole states -- which we are not
going to be able to get in a reasonable
way from topological field theory (though
some attempts have been made).



Before going on, let us discuss what we are
going to aim for in trying to solve 2+1-
dimensional gravity.

First of all, I am only going to consider the
case of negative cosmological constant.

Currently there is some suspicion that
quantum gravity with doesn’t exist
nonperturbatively (in any dimension) with
positive cosmological constant. One
reason for this is that it does not appear



to be possible, with , to define
precise observables. This is natural if it is
the case that a world with positive
cosmological constant (like the one we
may be living in) is always unstable.

If that is so, then a world with
doesn’t really make sense as an exact
theory in its own right but (like an unstable
particle) must be studied as part of a
larger system.



Whether that is the right interpretation or
not, since I do not know how to define any
precise observables, I don’t know what it
would mean to try to solve 2+1-
dimensional gravity with , since
it isn’t clear what we’d want to compute.



With zero cosmological constant, above 2+1
dimensions, there is a meaningful
observable: the S-matrix.

In 2+1 dimensions without matter fields, we
have no local propagating fields, and also
no black holes if the cosmological constant
is zero. So there is no S-matrix, and
again, there is no clear picture of what one
wants to calculate in trying to solve the
theory.



With negative cosmological constant, there
is an analog of the S-matrix, namely the
dual conformal field theory. It captures
the asymptotic information that is
analogous to the S-matrix in the

case. Not only does this make sense in
2+1 dimensions, but in fact one of the
precursors of the AdS/CFT
correspondence was the work of Brown
and Henneaux (1986) on 2+1-dimensional
gravity.



Brown and Henneaux showed that the
Hilbert space of 2+1-dimensional gravity,
with

-- the ellipses refer to the fact that this result
isn’t affected by matter fields – has an
action of a left- and right- moving pair of
Virasoro algebras with

In our modern understanding, this is part of
a much richer structure – the dual CFT



What it means to solve quantum gravity with

is to find the dual CFT.

And to repeat, we focus on the case

because that is the only case in which we
know what it would mean to solve the
theory.



This formulation makes obvious a statement
that from a classical point of view looks
rather surprising. When we look at the
classical action,

it appears that , which is the
cosmological constant in Planck units, is a
free parameter. But the formula for the
central charge
shows that this cannot be the case.



According to the Zamolodchikov c-theorem,
in any continuously variable family of
conformal field theories in 1+1 dimensions,
the central charge c is a constant.

Hence it cannot depend on a variable
parameter such as . It must be
that 2+1-dimensional quantum gravity
makes sense at most only for certain
values of .



Of course, Zamolodchikov’s theorem has an
important technical assumption – the
theory must have a normalizable and
SL(2)-invariant ground state. This
assumption is valid in 2+1-dimensional
gravity, with Anti de Sitter space being the
classical approximation to the relevant
quantum state.

(This assumption in Zamolodchikov’s
theorem has been overlooked in some
claims about 2+1-dimensional gravity.)



I should remark that the statement that
cannot be continuously varied is not

limited to pure gravity – it holds for the
same reason in any theory of 2+1-
dimensional gravity plus matter that has a
sensible Anti de Sitter vacuum. For
example, in the string theory models
whose CFT duals are known, is
expressed in terms of integer-valued
fluxes, which gives a direct explanation of
why it cannot be varied.



So we are only going to aim to solve the
theory for negative cosmological constant,
and even then, only for certain values of

. But what are the right values?

I don’t have any rigorous way to determine
this. But there is a simple picture that
gives us a plausible heuristic way to try to
find the right values, and it turns out that
this gives interesting values.



We are just going to take at face value the
gauge theory description of 2+1-
dimensional gravity. First of all, in addition
to , there is really a second
dimensionless parameter, since one can
add to the action a multiple of the Chern-
Simons invariant of the spin connection:

Here is an integer for topological
reasons.



So the theory really depends on two
parameters, namely and .

We understand why the second has to be an
integer, but we want to know why the first
one cannot vary continuously (which
would contradict the c-theorem).

If we just take at face value the gauge
theory interpretation of 2+1-dimensional
gravity, it gives an explanation of why the
parameters only take special values, and
the values it selects prove to be
interesting.



We use the fact that the gauge group

is essentially the same as

The two gauge fields are

and the action is a sum



If we take the gauge theory description
literally, then both and are
quantized to integer values for topological
reasons. Moreover, from the formulas of
Brown and Henneaux, combined with the
gravity/Chern-Simons relation, the central
charges turn out to be

This is an interesting result, because
holomorphic factorization is possible in 2d
CFT precisely for these values of c.



A further hint of holomorphic factorization is
simply the fact that the Chern-Simons
action is the sum of a “left” part and a
“right” part.

So in continuing, we are going to assume
holomorphic factorization, and we will just
try to describe the holomorphic part of the
theory – a holomorphic CFT with central
charge for some integer



Now one simple fact is that the ground state
energy of such a theory is

What other states are there? Naively, none
at all, since 2+1-dimensional gravity is
“trivial.” However, this isn’t right. At least
there are the boundary excitations that
lead to the Virasoro algebra of Brown and
Henneaux.



If there were no other excitations, the
partition function in genus 1 would be

This function counts the excitations of the
vacuum that can be made by acting
repeatedly with the stress tensor and its
derivatives.

But that cannot be the full answer, since this
function is not modular invariant.



There must be some additional primaries,
apart from the identity. The partition
function will then be

for some .

Now we are going to interpret the fact that
the theory is classically “trivial” to mean
that we should make as large as
possible.



It turns out that the largest that can be is

, and if this is the right value,
then the partition function is
uniquely determined. (Hoehn)

My proposal is that this gives the partition
function of the dual CFT, including the
black holes.



Riemann surfaces of genus 1 are
parametrized by the “j-function”

It actually is more convenient to use

The fact that the partition function is modular
invariant and has its only pole at

means that it is a polynomial in



More specifically, is a polynomial in

of order , since its pole at is of
order . So we have

with some coefficients . We can pick
these coefficients to make agree
with the naïve function

up to order .



But then we have no control over the term of
order . This is above the ground state
energy by k+1 units, so it means that there
will be primary fields of dimension

We interpret them as black holes, since the
theory is “trivial” except for the black holes.



In fact, something nice happens. The
minimum classical black hole mass, in
these units, is . But the
Bekenstein-Hawking entropy vanishes if
the mass is precisely . So black holes
of positive entropy exist precisely if the
mass is greater than , in perfect accord
with the fact that, according to our
proposal for the quantum theory, the
lowest dimension of a primary (other than
the identity) is



Moreover, the partition function that I’ve
described how to calculate, though I didn’t
quite write down an explicit formula, gives
a result for the black hole degeneracies
that agrees perfectly with the Bekenstein-
Hawking entropy. From the way I’ve
explained things, this may sound like a
miracle, but it will seem less surprising if
one is familiar with the “Farey tail” of

Dijkgraaf, Maldacena, Moore, and Verlinde
(1997)



Let us give an example. If , the
partition function is simply the J-function
itself, so

The number of black hole primaries of mass
2 is therefore 196883. The black hole
entropy is therefore log(196883)=12.19…

The classical entropy of a black hole with
k=1 and mass 2 is 4π=12.57... So we are
off by just a few percent.



This is the worst case. If we increase k or
the black hole mass, the semi-classical
approximation to the black hole entropy
quickly improves and it becomes
asymptotically exact for large k.

But let us go back to k=1.

The number 196883 of black hole primaries
at this low mass is a very special number.



Back in the 1970’s, the last of the sporadic
(or exceptional) finite simple groups was
constructed – the Fischer-Griess
“monster” or “friendly giant.” The lowest
dimension of an irreducible representation
of the monster is 196883. John McKay
noticed that this is very close to the
coefficient of the third term in



Frenkel, Lepowsky, and Meurman (1985)
explained this by constructing a
holomorphic conformal field theory with
partition function our friend

They also conjectured that their theory is the

unique holomorphic CFT with this partition
function.



If so – and the conjecture hasn’t been
entirely proved – then the Frenkel-
Lepowsky-Meurman monster theory must
be the dual CFT at k=1.

Thus, we can interpret the monster group as
the symmetry of 2+1-dimensional black
holes, at least at this value of k.



What about higher values of k? The big
question is whether “extremal” CFT’s exist
for k>1. Do they have monster symmetry?

Similar story for the supersymmetric case:
the natural values are c=12k, and
appropriate examples are known for the
first two cases, k=1,2. [ Frenkel,
Lepowsky, and Meurman; Duncan; Dixon,
Ginsparg, and Harvey ]


