Baryons from Instantons in holographic QCD

Shigeki Sugimoto (Nagoya Univ.)

Based on) H.Hata, T.Sakai, S.S and S.Yamato hep-th/0701280

T.Sakai and S.S. hep-th/0412141, hep-th/0507073

See also) D.Hong, M.Rho, H.Yee and P.Yi hep-th/0701276, arXiv:0705.2632

<u>Plan</u>

- Introduction + brief review
- 2 Baryons as Instantons
- 3 Baryon spectrum
- 4 Summary and outlook

1 Introduction + brief review

What are hadrons made of?

Gauge/String duality suggests

```
Gauge theory in 4 dim \,\simeq\,\, String theory in higher dim (QCD)
```

- String theory can again be a theory of hadrons!
 Problems in the old days can now be solved with the help of D-branes, curved space-time and holography.
- Both QCD and string theory can be fundamental at the same time!

Recently, we proposed

[Sakai-S.S. 2004]

Type IIA string theory in Witten's D4 background

+ N_f Probe D8-branes

(assuming $N_c\gg N_f$)

Outline

 N_c N_f pairs

QCD with N_f massless quarks (at low energy) dual

String theory in the D4 background + N_f probe D8-branes (assuming $N_c \gg N_f$)

Interpretation of strings

The topology of the background is

$$\mathbf{R}^{1,3} \times \mathbf{R}^2 \times S^4$$
 \mathbf{x}^{μ}
 (y, \mathbf{z})

D8-branes are extended along $(x^{\mu}, z) \times S^4$

- Closed strings → glueballs
- - Open strings on D8 → mesons
- ← studied around 1998

[Csaki-Ooguri-Oz-Terning 1998, Koch-Jevicki-Mihailescu-Nunes 1998, A.Hashimoto-Oz 1998, etc etc

 \leftarrow Reducing S^4

(Consider only the SO(5) invariant states for simplicity)

The effective action is a 5 dim $U(N_f)$ YM-CS theory

$$S_{\text{5dim}} \simeq S_{\text{YM}} + S_{\text{CS}}$$

$$S_{\text{YM}} = \kappa \int d^4x dz \operatorname{Tr}\left(\frac{1}{2}K(z)^{-1/3}F_{\mu\nu}^2 + K(z)F_{\mu z}^2\right) \quad S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5^{\omega_5(A)} \omega_5(A)$$

$$\mu, \nu = 0 \sim 3$$

Mesons

The effective action

$$S_{\text{5dim}} \simeq S_{\text{YM}} + S_{\text{CS}} \qquad \qquad K(z) = 1 + z^2 \qquad \qquad V_{\text{CS5-form}} \\ S_{\text{YM}} = \kappa \int d^4x dz \, \text{Tr} \left(\frac{1}{2} K(z)^{-1/3} F_{\mu\nu}^2 + K(z) F_{\mu z}^2 \right) \quad S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A) \\ \mu, \nu = 0 \sim 3$$

mode expansion

$$A_{\mu}(x^{\mu},z)=\sum_{n\geq 1}B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$
 Some complete sets $A_{z}(x^{\mu},z)=\sum_{n\geq 0}arphi^{(n)}(x^{\mu})\phi_{n}(z)$

We interpret

$$\varphi^{(0)} \sim \text{pion} \quad B_{\mu}^{(1)} \sim \rho \text{ meson} \quad B_{\mu}^{(2)} \sim a_1 \text{ meson} \quad \cdots$$

$$\left(\varphi^{(n)} \ (n = 1, 2, \cdots) \quad \text{are eaten by} \quad B_{\mu}^{(n)} \right)$$

 π, ρ, a_1, \cdots are unified in the 5 dim gauge field!

Caution!

Our analysis is reliable when:

 $\begin{array}{c} \bullet \ \ \text{large} \ \ N_c \\ \bullet \ \ \text{large} \ \ \lambda = g_{\text{YM}}^2 N_c \end{array} \right\} \\ \begin{array}{c} \dots \text{Supergravity approximation} \\ (\longrightarrow \text{difficult to make} \ M_{\text{KK}} \text{ large}) \end{array}$

D8

D8

- $E \ll M_{\rm KK} \leftarrow$ scale of 5th dimension
- ullet $N_c\gg N_f$... probe approximation
- $m_q=0$ (We mainly consider $N_c=3,\ N_f=2$)

We should not be too serious in the quantitative comparison with the experiments.

Nevertheless we find fairly good agreement.

Highlights

Geometric realization of the chiral symmetry breaking

Naturally reproduces various old ideas.

Vector meson dominance, Gell-Mann -Sharp-Wagner model, Skyrme model, Hidden local symmetry, Wess-Zumino-Witten term, Witten-Veneziano formula etc...

 Numerical estimate of the masses and couplings roughly agrees with the various experimental data

Quantitative tests

mass

mass	ρ	a_1	ho'	(a_1')	ho''
exp.(MeV)	776	1230	1465	(1640)	1720
our model	[776]	1189	1607	2023	2435
ratio	[1]	1.03	0.911	(0.811)	0.706

coupling

input
$$(M_{\rm KK} \simeq 949 \ {\rm MeV})$$

coupling		fitting $m_ ho$ and f_π	experiment
f_{π}	$1.13 \cdot \kappa^{1/2} M_{KK}$	[92.4 MeV]	92.4 MeV
L_1	$0.0785 \cdot \kappa$	0.584×10^{-3}	$(0.1 \sim 0.7) \times 10^{-3}$
L_2	$0.157 \cdot \kappa$	1.17×10^{-3}	$(1.1 \sim 1.7) \times 10^{-3}$
L_3	$-0.471 \cdot \kappa$	-3.51×10^{-3}	$-(2.4 \sim 4.6) \times 10^{-3}$
L_9	$1.17 \cdot \kappa$	8.74×10^{-3}	$(6.2 \sim 7.6) \times 10^{-3}$
L_{10}	$-1.17 \cdot \kappa$	-8.74×10^{-3}	$-(4.8 \sim 6.3) \times 10^{-3}$
$g_{ ho\pi\pi}$	$0.415 \cdot \kappa^{-1/2}$	4.81	5.99
$g_ ho$	$2.11 \cdot \kappa^{1/2} M_{KK}^2$	0.164 GeV ²	0.121 GeV^2
$g_{a_1 ho\pi}$	$0.421 \cdot \kappa^{-1/2} M_{KK}$	4.63 GeV	$2.8\sim4.2~\text{GeV}$

Much better than expected!

Baryons

 We can apply the construction of baryons proposed in the AdS/CFT context. [Witten 1998, Gross-Ooguri 1998]

Relation to other descriptions

Summary of the rest of the talk

- We propose a new way to analyze baryons that extends Skyrme's old idea including contributions from vector mesons.
- Baryons are described as (4 dim) instantons in the 5 dim gauge theory.
- Quantum mechanics on the instanton moduli space, gives the baryon spectrum.
- The quantitative tests are not good enough yet.
 Please be generous!

Baryons as instantons M = 1, 2, 3, z

- Consider an instanton config. in $x^M=(\vec{x},z)\in\mathbf{R}^4$

- behaves as a point-like particle
- Interpreted as a baryon

In fact,

baryon # Instanton #
$$N_B = \frac{1}{8\pi^2} \int \mathrm{tr} F \wedge F$$

Note

D4 wrapped on
$$S^4 \simeq \text{instanton on D8} \simeq \text{Skyrmion}$$
[Witten, Gross-Ooguri 1998] [Atiyah-Manton 1989] [Skyrme 1961]

Realization of Atiyah-Manton:
$$U(x^{\mu}) \equiv P \exp\left\{-\int_{-\infty}^{\infty} dz A_z(x^{\mu}, z)\right\}$$

Skyrmion Instanton

Classical solution

The instanton solution for

$$K(z) = 1 + z^2$$

$$S_{\rm YM} = \kappa \int d^4x dz \, {\rm Tr} \left(\frac{1}{2} K(z)^{-1/3} F_{\mu\nu}^2 + K(z) F_{\mu z}^2 \right) \qquad (M_{\rm KK} = 1 \text{ unit})$$

$$\kappa = \frac{\lambda N_c}{216\pi^2} \qquad \lambda : \text{'t Hooft coupling} \qquad (\text{assumed to be large})$$

shrinks to zero size!

(Even though the pion effective action contains the Skyrme term!)

The BPST instanton configuration with $\rho \to 0$ is the minimum energy configuration.

The effect of the Chern-Simons term:

$$S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A) = \frac{N_c}{16\pi^2} \int d^4x dz \, A_0^{U(1)} \underbrace{\epsilon^{ijk} \text{Tr} F_{ij} F_{kz}}_{U(1) \text{ part}} + \cdots$$

$$U(1) \text{ part}$$
Non-zero for instanton

- source of the U(1) charge
- point-like charge costs energy
- → The size will be stabilized with a non-zero finite value.

This is the same mechanism as the stabilization of Skyrmions via ω meson. [Adkins-Nappi 1984]

• We can show $\rho_{\min} \sim \mathcal{O}(\lambda^{-1/2})$

It is convenient to rescale as

$$x^M \to \lambda^{-1/2} x^M$$
 $A_M \to \lambda^{1/2} A_M$ $(M = 1, 2, 3, z)$

Then, we have

$$\mathcal{L}_{\mathsf{YM}} \sim \kappa \operatorname{Tr} \left(\frac{1}{2} F_{MN}^2 + \mathcal{O}(\lambda^{-1}) \right)$$

YM in flat space

The leading order classical solution is the BPST instanton with $\rho = \rho_{\rm min}$ and Z = 0

$$A_M^{\text{Cl}} = -i \frac{\xi^2}{\xi^2 + \rho^2} g \partial_M g^{-1}$$

$$g = \frac{(z - Z) - i(\vec{x} - \vec{X}) \cdot \vec{\tau}}{\xi} \quad \xi = \sqrt{(\vec{x} - \vec{X})^2 - (z - Z)^2}$$

 ρ : size (\vec{X}, Z) : position of the instanton

3 Baryon spectrum

Consider a slowly moving (rotating) baryon configuration.
Use the moduli space approximation method :

Instanton moduli
$$\mathcal{M}\ni (X^{\alpha}) \longrightarrow (X^{\alpha}(t))$$
 $(\alpha=1,2,\cdots,\dim\mathcal{M})$ $A_M(t,x)\sim A_M^{\mathrm{cl}}(x;X^{\alpha}(t))$ Using time S_{5dim} Quantum Mechanics for $X^{\alpha}(t)$

For SU(2) one instanton,

$$\mathcal{M} \simeq \{(\overrightarrow{X}, Z, \rho)\} \times SU(2)/\mathbf{Z_2} \quad \mathbf{z_2: a \rightarrow -a}$$
 position size $\mathbf{a} \leftarrow SU(2)$ orientation

$$L_{QM} = \frac{G_{\alpha\beta}}{2} \dot{X}^{\alpha} \dot{X}^{\beta} - U(X^{\alpha}) \quad U(X^{\alpha}) = 8\pi^{2}\kappa \left(1 + \lambda^{-1} \left(\frac{\rho^{2}}{6} + \frac{3^{6}\pi^{2}}{5\rho^{2}} + \frac{Z^{2}}{3} \right) + \mathcal{O}(\lambda^{-2}) \right)$$

Note (\vec{X}, \mathbf{a}) : genuine moduli (same as in Skyrme model)

(
ho,Z) : new degrees of freedom, added since they are light compared with the other massive modes.

- Solving the Schrodinger equation for this Quantum mechanics, we obtain the baryon spectrum
 - Generalization of Adkins-Nappi-Witten [Adkins-Nappi-Witten1983] including vector mesons and ρ , Z modes

Results

- Parity odd states appear. (Unlike in the ANW!)

parity =
$$(-1)^{n_z}$$
 n_z : excitation of the Z mode

Mass spectrum

$$M \simeq M_0 + \left(\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N_c^2} + \sqrt{\frac{2}{3}}(n_\rho + n_z)\right) M_{KK}$$

$$l = 2I = 2J = 1, 3, 5, \dots \quad n_\rho = 0, 1, 2, \dots \quad n_z = 0, 1, 2, \dots$$

Theory

$$M \simeq M_0 + \left(\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N_c^2} + \sqrt{\frac{2}{3}}(n_\rho + n_z)\right) M_{\mathsf{KK}}$$

Experiment

(I = J states from PDG)

*) Evidence for existence is poor

Note:

We only consider the mass difference, since $\mathcal{O}(N_c^0)$ term in M_0 is not known,

$$M_0 = \text{(classical soliton mass)} + \mathcal{O}(N_c^0)$$

 $\sim \mathcal{O}(N_c)$

numerical values (just for illustration!)

$$M \simeq M_0 + \left(\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N_c^2} + \sqrt{\frac{2}{3}}(n_\rho + n_z)\right) M_{KK}$$

$$l = 2I = 2J = 1, 3, 5, \dots \quad n_\rho = 0, 1, 2, \dots \quad n_z = 0, 1, 2, \dots \quad \text{parity} = (-1)^{n_z}$$

• If we choose $M_{\rm KK}\simeq 500~{
m MeV}$ and use nucleon mass ($\simeq 940~{
m MeV}$) to fix the constant M_0 , (we only consider the mass difference), we obtain

$(n_{ ho},n_z)$	(0,0)	(1,0)	(0,1)	(1,1)	(2,0)/(0,2)	(2,1)/(0,3)	(1,2)/(3,0)
N(l=1)	[940] ⁺	1348 ⁺	1348 ⁻	1756 ⁻	1756 ⁺ , 1756 ⁺	2164-, 2164-	2164 ⁺ , 2164 ⁺
$\Delta (l=3)$	1240 ⁺	1648 ⁺	1648-	2056-	2056+,2056+	2464-, 2464-	2464 ⁺ ,2464 ⁺

States appeared in the Skyrme model

 $(\pm : parity)$

• I = J states from Particle Data Group look like....

$(n_ ho,n_z)$	(0,0)	(1,0)	(0,1)	(1,1)	(2,0)/(0,2)	(2,1)/(0,3)	(1,2)/(3,0)
N(l=1)	940+	1440+	1535 ⁻	1655 ⁻	1710 ⁺ , ?	2090*, ?	$2100_*^+, ?$
$\Delta (l=3)$	1232+	1600+	1700^{-}	1940_{*}^{-}	1920 ⁺ , ?	?, ?	?, ?

(?: not found, *: evidence of existence is poor)

- Some interesting features captured in the model (?)
- I = J states from Particle Data Group

Note The phenomenological quark model predicts

$$M_{N'(1440)} - M_N \sim 2 \times (M_{N^*(1535)} - M_N)$$

Recent lattice study suggests [K.Sasaki-S.Sasaki-Hatsuda 2005]

$$M_{N'(1440)} \sim M_{N^*(1535)}$$

Caution!

The predicted baryon spectrum looks nice,

but there are a lot of reasons that you should NOT trust these values.

- $1/\lambda$ expansion may not work well.
- Higher derivative terms are neglected.
- $N_c=3$ is not large enough especially for $l\geq 3, \ n_{\rho}+n_{z}\geq 3$
- The model deviates from real QCD at high energy $\sim M_{
 m KK}$
- $M_{\rm KK} \simeq 950~{
 m MeV}$ is the value consistent with ho meson mass
- Need more investigation for the quantitative tests.

4 Summary and outlook

- Baryons are described as (4 dim) instantons in a 5 dim gauge theory.
- We proposed a new way to analyze baryons that extends Skyrme's old idea including contributions from vector mesons.
- There are a lot more to do to improve the analysis. (solve EOM numerically, include higher derivative terms, α' , loop, N_f/N_c corrections etc.)
- It would be interesting to investigate other static properties of baryons.
 (couplings, charge radii, magnetic moments etc.)