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An Introduction to FEy;

=

fMassless maximal supergravities all arise from dimensional
reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global
symmetry G.

The scalars parametrise the manifold G/H, where H is the
maximal compact subgroup of G.

That Is, the symmetry G is non-linearly realised in the
scalar sector.

In D = 5 and below, G is an exceptional group

Cremmer, Julia, Marcus, Schwarz
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D G
10A RT
10B SL(2,R)
SL(2,R) x RT
SL(3,R) x SL(2,R)
SL(5,R)
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An Introduction to FEy;

-

Gravity as a non-linear realisation sorisov, Ogievetsky, 1974
g =exp(x®F,) eajp(habKab)
where the K’s are the generators of SL(D)
(K%, K] = 0¢K% — 04K, [K%, P =06P,

Gravity is formulated as the non-linear realisation of the
closure of this group with the conformal group
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An Introduction to FEy;

-

Gravity as a non-linear realisation sorisov, Ogievetsky, 1974 T
g =exp(x®F,) eajp(habK“b)

where the K'’s are the generators of SL(D)

(K%, K] = 0¢K% — 04K, [K%, P =06P,

Gravity is formulated as the non-linear realisation of the
closure of this group with the conformal group

The theory is invariant under

g — gogh™*

Lwhere his local SO(D) J
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-

Maurer-Cartan form:
Y = g_ldg —w
w: Spin connection. It transforms as
w — hwh™t 4+ hdh™!
As a result, V transforms as

Y — hVh !
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An Introduction to F;

-

Maurer-Cartan form:
Y = g_ldg —w
w: Spin connection. It transforms as
w — hwh ! + hdh™1
As a result, V transforms as
Y — hVh !

One gets
V =dxz"(e," P, + Quab[(“b)
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Similar analysis for the bosonic sector of 11-dimensional
supergravity:

-

[}%abc7 Rdef] _ Rabcdef

group element:

g = GJJp(QjaPa) eajp(habKCLb> eﬂfp(AabcRabc i AabcdefRadeef)
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-

Similar analysis for the bosonic sector of 11-dimensional
supergravity:

=

[}%abc7 Rdef] _ Rabcdef

group element:
g — €$p<$apa) GIp(habKab> exp(AabcRabc + AadeefRadeef)

Field equations: duality relations
West, hep-th/0005270
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An Introduction to FEy;

fSimilar analysis for the bosonic sector of 11-dimensional T

supergravity:
[}%abc7 Rdef] _ Rabcdef

group element:
g — e$p($aPa) efp(habKab) egjp(AabcRabc + AadeefRadeef)

Field equations: duality relations
West, hep-th/0005270

F11 1s the smallest Kac-Moody group that contains this
group

West, hep-th/0104081
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3 4 6 7
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1 2 5 8 9 10

Cartan matrix has negative eigenvalues — The algebra is
Infinite-dimensional
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T 11
O O O O O O O O O O
1 2 3 4 5 6 7 8 9 10

Cartan matrix has negative eigenvalues — The algebra is
Infinite-dimensional

A complete list of the generators Is lacking, not to mention
other representations...

ldea: write each positive root in terms of the simple roots of
Ajp and the simple root o

10
o= Z nio; + Lo [ = level

- = -
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A necessary condition for the occurrence of a T
representation of A;o with highest weight > . p;A; Is that this

weight arises in a root of £;. One then gets

:__l2+zpz Z] j
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A necessary condition for the occurrence of a T
representation of A;o with highest weight > . p;A; Is that this

weight arises in a root of £;. One then gets
— __l2 + sz Z] j

The fact that £ is a Kac-Moody algebra with symmetric
Cartan matrix imposes the constraint

ot =20,-2—4...
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An Introduction to FEy;

-

A necessary condition for the occurrence of a T
representation of A;o with highest weight > . p;A; Is that this

weight arises in a root of £;. One then gets
— __l2 + sz Z] j

The fact that £ is a Kac-Moody algebra with symmetric
Cartan matrix imposes the constraint

ot =20,-2—4...

We can solve this level by level
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-

Solutions, using ¢; = p11—;:
K% 1 =0
R™ =1, g3=1
Ral...a(;’ l — 27 q6 — 1

}%a,l...ag,b7 l _ 37 Ql — 17 q8 — 1
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RUW-b =3 q1=1, gg=1
The (8,1) generator is associated to the dual graviton
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An Introduction to FEy;

-

Solutions, using ¢; = p11—;:
K% 1=0
R™ =1, g3=1
Ral...a67 l — 27 q6 — 1

Rt =3 ¢ =1, qgg =1
The (8,1) generator is associated to the dual graviton

All the generators arise from multiple commutators of R

The level is the number of times R%¢ occurs
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fNon-linear realisation: To each positive level generator we
associate a gauge field
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associate a gauge field

All bosonic fields are Goldstone bosons of Fy;
The field equations are first order duality relations

At level 4 one gets the solution ¢19 = 1, g1 = 2 corresponding
to the gauge field

A101,1
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fNon-linear realisation: To each positive level generator we
associate a gauge field

All bosonic fields are Goldstone bosons of Fy;
The field equations are first order duality relations

At level 4 one gets the solution ¢19 = 1, g1 = 2 corresponding
to the gauge field

A101,1

Dimensional reduction — Ay, that is Romans theory!
Schnakenburg and West, hep-th/0204207, West, hep-th/0402140
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An Introduction to FEy;

=

fNon-linear realisation: To each positive level generator we
associate a gauge field

All bosonic fields are Goldstone bosons of Fy;
The field equations are first order duality relations

At level 4 one gets the solution ¢19 = 1, g1 = 2 corresponding
to the gauge field

A101,1
Dimensional reduction — Ay, that is Romans theory!

Schnakenburg and West, hep-th/0204207, West, hep-th/0402140

The theory is unique, gravity emerges from the choice of
the background
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F11 predicts for 1IB the following fields at low levels:

Ag Ay oAy ALY alem) A
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F11 predicts for 1IB the following fields at low levels:
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Ag Ay oAy ALY alem) A

Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

One finds exactly the same forms
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F11 predicts for 1IB the following fields at low levels:

Ag Ay oAy ALY alem) A

Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

One finds exactly the same forms

Besides, it turns out £7; reproduces the same bosonic
algebra encoded in the supersymmetric theory
West, hep-th/0511153
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FE; and supergravities

-

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280
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strength dual to Romans cosmological constant) and two
10-forms

o -

E'1 1 and M-theory — p. 21/:



E; and supergravities

-

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, FR., hep-th/0602280

The algebra closes among the rest on a 9-form (field
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10-forms
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If m # 0 the algebra does not arise from 11-dimensional
supergravity
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E; and supergravities

o .

ame analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, FR., hep-th/0602280

The algebra closes among the rest on a 9-form (field
strength dual to Romans cosmological constant) and two
10-forms

The algebra describes both massless and massive IIA

If m # 0 the algebra does not arise from 11-dimensional
supergravity

Again, precise agreement with E1;
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In a series of papers, all the gauged maximal supergravities
InD =7,6,...,3 have been classified

de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289

Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076
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fIn a series of papers, all the gauged maximal supergravitiesT

InD =7,6,...,3 have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289
Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076

Gauging:
D, = 0, — A3 O ta

The embedding tensor © belongs to a reducible
representation of GG
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In a series of papers, all the gauged maximal supergravities
InD =7,6,...,3 have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289
Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076

Gauging:
D, = 0, — A3 O ta

The embedding tensor © belongs to a reducible
representation of GG

Jacobl identities, as well as supersymmetry, pose
constraints on ©

o -
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E; and supergravities

D G ©

7| SLG,R) | 15 @ 40
6 | SO(5,5) | 144

° | FEg(1e) 351
4| Enir 912

3

Egig) | 1@ 3875




E; and supergravities

D G ©

7 | SL(5,R) | 15 40
6 | SO(5,5) | 144
° | FEg(1e) 351
4| Enir 912

3

Egig) | 1@ 3875

In D = 9 all the gauged supergravities have been classified
via a case-by-case analysis
Mass deformations in 2 @ 3 of SL(2,R)

Bergshoeff, de Wit, Gran, Linares, Roest, hep-th/0209205
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the same representation of the embedding tensor
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D — 1 forms in D dimensions
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Supersymmetry relates gauging and mass deformations, in
the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to
D — 1 forms in D dimensions

We want to classify all the forms that arise in £1; In D
dimensions
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The fields of £
=

Supersymmetry relates gauging and mass deformations, inT
the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to
D — 1 forms in D dimensions

We want to classify all the forms that arise in £1; In D
dimensions

Basic idea: the sum of the indices of each field has to be
equal to 3i:

1n+ Y jg =3l
j
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The fields of £/,

e substitute 11n + . jg; = 3l Into

:__Z2+ZQZ @]

j



The fields of £/,
W

e substitute 11n + . jg; = 3l Into

= ——52 +Z% i)
We get

@2232 (9= 3)a; + 5 Z J)pip;




The fields of £
=

Propagating fields have n = ¢q19 = 0. One gets

=

Agg.. .93 Agg.. .96 Agg.. 981

That is we get infinitely many dual descriptions of the same
fields. The propagating fields in dimension D arise from the
propagating fields in D = 11
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Y Y

That is we get infinitely many dual descriptions of the same

fields. The propagating fields in dimension D arise from the
propagating fields in D = 11

In order to determine the D — 1-forms, we also need to
consider n =qg9 =0 q10 = 1
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consider giop =qo=0n =1
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The fields of £
=

Propagating fields have n = ¢q19 = 0. One gets T

Ago.. .93 Ago. .96 Ago... 981

Y

That is we get infinitely many dual descriptions of the same
fields. The propagating fields in dimension D arise from the
propagating fields in D = 11

In order to determine the D — 1-forms, we also need to
consider n =qg9 =0 q10 = 1

Finally, in order to determine the D-forms, we also need to
consider giop =qo=0n =1

Remarkably, there are only a finite number of
11-dimensional fields that give rise to forms in any
~ dimension above two .
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The fields of £

D || field
10 | g4
A3
As
Ag 1
8 | Ags
5 | Agg
3 | Agsi




The fields of F/{4

10 | Ai011

12110,8,2,1

12110,8,3
A108,5,1
12110,8,6
12110,8,7,2
12110,8,8,1
12110,8,8,4 J
12110,8,8,7
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The fields of £
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F1; and dimensional reduction
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Consider the 7-dimensional example

-

6-forms:
Ag — 1 Ag)l — 4320

49,3 — 6® 10 fl10,1,1 — 10 A10,4,1 — 4
of SL(4, R). This is 15 @ 40 of SL(5, R)
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F1; and dimensional reduction

-

Consider the 7-dimensional example

-

6-forms:
Ag — 1 Ag)l — 4320

1219,3 — 6® 10 12110,1,1 — 10 12110,4,1 — 4
of SL(4, R). This is 15 @ 40 of SL(5, R)

7/-forms:
A8,1—>6@10 A9,3—>4@20

12110,1,1 — 4 @ 36 12110,4,1 — 1&® 15

A1 — 4 A1131 — 15 A114 — 1 Al143 — 4

Lthat iS5 ® 45 @ 70 of SL(5, R) J
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F'11 and dimensional reduction

=

D G 1-forms | 2-forms | 3-forms | 4-forms | 5-forms | 6-forms | 7-forms | 8-forms | 9-forms | 10-forms
10A Rt 1 1 1 1 1 1 1 1 1
4
10B SL(2,R) 2 1 2 3 )
2 2 3 3 4
9 SL(2,R) x RT 2 1 1 2 2
1 1 1 2 2
(15,1)
. - 81) | (6,2) | (3.3
8 | SL(3,R) x SL(2,R 3,2 3,1 1,2 3,1 3,2 _
GRxSLeR)| 32 | G | 02 | BD | 62 | /3| 59 | 61
(3,1)
40 70
7 SL(5,R) 10 5 5 10 24 45
15 5
320
6 SO(5,5) 16 10 16 45 144 126
10
5 Ee(+6) 27 27 78 351 1728
27
8645
4 E 56 133 912
T(+7) 133
3 Eg(1s) 248 38175 ?
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Conclusions

- .

#® 3-forms in 3 dimensions: 248 @ 3875 @ 147250 of Ex

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304
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# We find complete agreement with all the known
supergravity results, for which E; provides an
11-dimensional origin
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# We find complete agreement with all the known
supergravity results, for which E; provides an
11-dimensional origin

# We also predict the massive deformations in D = 8 and
the D-forms in any dimension D below 10
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Conclusions

=

3-forms in 3 dimensions: 248 © 3875 @ 147250 of Ly

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

We find complete agreement with all the known
supergravity results, for which E; provides an
11-dimensional origin

We also predict the massive deformations in D = 8 and
the D-forms in any dimension D below 10

F11 provides a completely unified description of all
supergravities and it encodes all their dynamical
features

-
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