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An introduction to E11

Massless maximal supergravities all arise from dimensional
reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global
symmetry G.

The scalars parametrise the manifold G/H, where H is the
maximal compact subgroup of G.

That is, the symmetry G is non-linearly realised in the
scalar sector.

In D = 5 and below, G is an exceptional group
Cremmer, Julia, Marcus, Schwarz
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An introduction to E11

D G

10A R
+

10B SL(2, R)

9 SL(2, R) × R
+

8 SL(3, R) × SL(2, R)

7 SL(5, R)

6 SO(5, 5)

5 E6(+6)

4 E7(+7)

3 E8(+8)
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An introduction to E11

Gravity as a non-linear realisation Borisov, Ogievetsky, 1974

g = exp(xaPa) exp(ha
bKa

b)

where the K ’s are the generators of SL(D)

[Ka
b,K

c
d] = δc

bK
a
d − δa

dKc
b [Ka

b, Pc] = δa
c Pb

Gravity is formulated as the non-linear realisation of the
closure of this group with the conformal group
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Gravity as a non-linear realisation Borisov, Ogievetsky, 1974

g = exp(xaPa) exp(ha
bKa

b)

where the K ’s are the generators of SL(D)

[Ka
b,K

c
d] = δc

bK
a
d − δa

dKc
b [Ka

b, Pc] = δa
c Pb

Gravity is formulated as the non-linear realisation of the
closure of this group with the conformal group

The theory is invariant under

g → g0gh−1

where h is local SO(D)
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An introduction to E11

Maurer-Cartan form:

V = g−1dg − ω

ω: spin connection. It transforms as

ω → hωh−1 + hdh−1

As a result, V transforms as

V → hVh−1
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An introduction to E11

Maurer-Cartan form:

V = g−1dg − ω

ω: spin connection. It transforms as

ω → hωh−1 + hdh−1

As a result, V transforms as

V → hVh−1

One gets
V = dxµ(eµ

aPa + Ωµa
bKa

b)
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An introduction to E11

Similar analysis for the bosonic sector of 11-dimensional
supergravity:

[Rabc, Rdef ] = Rabcdef

group element:

g = exp(xaPa) exp(ha
bKa

b) exp(AabcR
abc + AabcdefRabcdef )
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Similar analysis for the bosonic sector of 11-dimensional
supergravity:

[Rabc, Rdef ] = Rabcdef

group element:

g = exp(xaPa) exp(ha
bKa

b) exp(AabcR
abc + AabcdefRabcdef )

Field equations: duality relations
West, hep-th/0005270
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An introduction to E11

Similar analysis for the bosonic sector of 11-dimensional
supergravity:

[Rabc, Rdef ] = Rabcdef

group element:

g = exp(xaPa) exp(ha
bKa

b) exp(AabcR
abc + AabcdefRabcdef )

Field equations: duality relations
West, hep-th/0005270

E11 is the smallest Kac-Moody group that contains this
group
West, hep-th/0104081
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Cartan matrix has negative eigenvalues → The algebra is
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A complete list of the generators is lacking, not to mention
other representations...
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An introduction to E11

i i i i i i i i i i

i

1 2 3 4 5 6 7 8 9 10

11

Cartan matrix has negative eigenvalues → The algebra is
infinite-dimensional

A complete list of the generators is lacking, not to mention
other representations...

Idea: write each positive root in terms of the simple roots of
A10 and the simple root α11

α =
10∑

i=1

niαi + lα11 l = level
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An introduction to E11

A necessary condition for the occurrence of a
representation of A10 with highest weight

∑
j pjλj is that this

weight arises in a root of E11. One then gets

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj
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An introduction to E11

A necessary condition for the occurrence of a
representation of A10 with highest weight

∑
j pjλj is that this

weight arises in a root of E11. One then gets

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj

The fact that E11 is a Kac-Moody algebra with symmetric
Cartan matrix imposes the constraint

α2 = 2, 0,−2,−4 . . .
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An introduction to E11

A necessary condition for the occurrence of a
representation of A10 with highest weight

∑
j pjλj is that this

weight arises in a root of E11. One then gets

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj

The fact that E11 is a Kac-Moody algebra with symmetric
Cartan matrix imposes the constraint

α2 = 2, 0,−2,−4 . . .

We can solve this level by level
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An introduction to E11

Solutions, using qj = p11−j:

Ka
b l = 0

Rabc l = 1, q3 = 1

Ra1...a6 , l = 2, q6 = 1

Ra1...a8,b, l = 3, q1 = 1, q8 = 1
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An introduction to E11

Solutions, using qj = p11−j:

Ka
b l = 0

Rabc l = 1, q3 = 1

Ra1...a6 , l = 2, q6 = 1

Ra1...a8,b, l = 3, q1 = 1, q8 = 1

The (8,1) generator is associated to the dual graviton

All the generators arise from multiple commutators of Rabc

The level is the number of times Rabc occurs
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associate a gauge field
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All bosonic fields are Goldstone bosons of E11

The field equations are first order duality relations

At level 4 one gets the solution q10 = 1, q1 = 2 corresponding
to the gauge field

A10,1,1

Dimensional reduction → A9, that is Romans theory!
Schnakenburg and West, hep-th/0204207, West, hep-th/0402140
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An introduction to E11

Non-linear realisation: To each positive level generator we
associate a gauge field

All bosonic fields are Goldstone bosons of E11

The field equations are first order duality relations

At level 4 one gets the solution q10 = 1, q1 = 2 corresponding
to the gauge field

A10,1,1

Dimensional reduction → A9, that is Romans theory!
Schnakenburg and West, hep-th/0204207, West, hep-th/0402140

The theory is unique, gravity emerges from the choice of
the background
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E11 and supergravities

E11 predicts for IIB the following fields at low levels:

Aα
2 A4 Aα

6 A
(αβ)
8 A

(αβγ)
10 Aα

10
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Aα
2 A4 Aα

6 A
(αβ)
8 A

(αβγ)
10 Aα

10

Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

One finds exactly the same forms
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E11 and supergravities

E11 predicts for IIB the following fields at low levels:

Aα
2 A4 Aα

6 A
(αβ)
8 A

(αβγ)
10 Aα

10

Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

One finds exactly the same forms

Besides, it turns out E11 reproduces the same bosonic
algebra encoded in the supersymmetric theory
West, hep-th/0511153
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E11 and supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233

Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280
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Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280

The algebra closes among the rest on a 9-form (field
strength dual to Romans cosmological constant) and two
10-forms

The algebra describes both massless and massive IIA

If m 6= 0 the algebra does not arise from 11-dimensional
supergravity
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E11 and supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233

Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280

The algebra closes among the rest on a 9-form (field
strength dual to Romans cosmological constant) and two
10-forms

The algebra describes both massless and massive IIA

If m 6= 0 the algebra does not arise from 11-dimensional
supergravity

Again, precise agreement with E11
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E11 and supergravities

In a series of papers, all the gauged maximal supergravities
in D = 7, 6, . . . , 3 have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289

Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076
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E11 and supergravities

In a series of papers, all the gauged maximal supergravities
in D = 7, 6, . . . , 3 have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289

Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076

Gauging:
Dµ = ∂µ − AM

µ ΘM
αtα

The embedding tensor Θ belongs to a reducible
representation of G

Jacobi identities, as well as supersymmetry, pose
constraints on Θ
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E11 and supergravities

D G Θ

7 SL(5, R) 15 ⊕ 40

6 SO(5, 5) 144

5 E6(+6) 351

4 E7(+7) 912

3 E8(+8) 1 ⊕ 3875
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E11 and supergravities

D G Θ

7 SL(5, R) 15 ⊕ 40

6 SO(5, 5) 144

5 E6(+6) 351

4 E7(+7) 912

3 E8(+8) 1 ⊕ 3875

In D = 9 all the gauged supergravities have been classified
via a case-by-case analysis
Mass deformations in 2 ⊕ 3 of SL(2, R)
Bergshoeff, de Wit, Gran, Linares, Roest, hep-th/0209205
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The fields ofE11

Supersymmetry relates gauging and mass deformations, in
the same representation of the embedding tensor

E11 and M-theory – p. 24/32



The fields ofE11

Supersymmetry relates gauging and mass deformations, in
the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to
D − 1 forms in D dimensions

E11 and M-theory – p. 24/32



The fields ofE11

Supersymmetry relates gauging and mass deformations, in
the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to
D − 1 forms in D dimensions

We want to classify all the forms that arise in E11 in D
dimensions

E11 and M-theory – p. 24/32



The fields ofE11

Supersymmetry relates gauging and mass deformations, in
the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to
D − 1 forms in D dimensions

We want to classify all the forms that arise in E11 in D
dimensions

Basic idea: the sum of the indices of each field has to be
equal to 3l:

11n +
∑

j

jqj = 3l
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The fields ofE11

We substitute 11n +
∑

j jqj = 3l into

α2 = −
2

11
l2 +

∑

i,j

qi(Aij)
−1qj

E11 and M-theory – p. 25/32



The fields ofE11

We substitute 11n +
∑

j jqj = 3l into

α2 = −
2

11
l2 +

∑

i,j

qi(Aij)
−1qj

We get

α2 =
1

9

10∑

j=1

j(9 − j)q2
j +

2

9

∑

i<j

i(9 − j)pipj

−
4

9
n

∑

i

ipi −
2 · 11

9
n2 = 2, 0,−2, . . .
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The fields ofE11

Propagating fields have n = q10 = 0. One gets

A9,9,...,9,3 A9,9,...,9,6 A9,9,...,9,8,1

That is we get infinitely many dual descriptions of the same
fields. The propagating fields in dimension D arise from the
propagating fields in D = 11
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The fields ofE11

Propagating fields have n = q10 = 0. One gets

A9,9,...,9,3 A9,9,...,9,6 A9,9,...,9,8,1

That is we get infinitely many dual descriptions of the same
fields. The propagating fields in dimension D arise from the
propagating fields in D = 11

In order to determine the D − 1-forms, we also need to
consider n = q9 = 0 q10 = 1

Finally, in order to determine the D-forms, we also need to
consider q10 = q9 = 0 n = 1

Remarkably, there are only a finite number of
11-dimensional fields that give rise to forms in any
dimension above two
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The fields ofE11

D field

10 ĝ1
1

Â3

Â6

Â8,1

8 Â9,3

5 Â9,6

3 Â9,8,1
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The fields ofE11

D field

10 Â10,1,1

7 Â10,4,1

5 Â10,6,2

4 Â10,7,1

Â10,7,4

Â10,7,7

3 Â10,8

Â10,8,2,1

Â10,8,3

Â10,8,5,1

Â10,8,6

Â10,8,7,2

Â10,8,8,1

Â10,8,8,4

Â10,8,8,7
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The fields ofE11

D field µ

10 Â11,1 1

8 Â11,3,1 1

7 Â11,4 1
Â11,4,3 1

6 Â11,5,1,1 1

5 Â11,6,1 2
Â11,6,3,1 1
Â11,6,4 1
Â11,6,6,1 1

4 Â11,7 1
Â11,7,2,1 1
Â11,7,3 2
Â11,7,4,2 1
Â11,7,5,1 1
Â11,7,6 2
Â11,7,6,3 1
Â11,7,7,2 1
Â11,7,7,5 1
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E11 and dimensional reduction

Consider the 7-dimensional example
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E11 and dimensional reduction

Consider the 7-dimensional example

6-forms:
Â6 → 1 Â8,1 → 4 ⊕ 20

Â9,3 → 6 ⊕ 10 Â10,1,1 → 10 Â10,4,1 → 4

of SL(4, R). This is 15 ⊕ 40 of SL(5, R)
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E11 and dimensional reduction

Consider the 7-dimensional example

6-forms:
Â6 → 1 Â8,1 → 4 ⊕ 20

Â9,3 → 6 ⊕ 10 Â10,1,1 → 10 Â10,4,1 → 4

of SL(4, R). This is 15 ⊕ 40 of SL(5, R)

7-forms:
Â8,1 → 6 ⊕ 10 Â9,3 → 4 ⊕ 20

Â10,1,1 → 4 ⊕ 36 Â10,4,1 → 1 ⊕ 15

Â11,1 → 4 Â11,3,1 → 15 Â11,4 → 1 Â11,4,3 → 4

that is 5 ⊕ 45 ⊕ 70 of SL(5, R)
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E11 and dimensional reduction

D G 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms

10A R
+

1 1 1 1 1 1 1 1
1

1

10B SL(2, R) 2 1 2 3
4

2

9 SL(2, R) × R
+

2

2 1 1 2

2 3 3 4

2

1 1 1 2 2

8 SL(3, R) × SL(2, R) (3,2) (3,1) (1,2) (3,1) (3,2)

(15,1)

(8,1) (6,2) (3,3)

(1,3) (3,2) (3,1)

(3,1)

7 SL(5, R) 10 5 5 10 24

40 70

45

15 5

6 SO(5, 5) 16 10 16 45 144

320

126

10

5 E6(+6) 27 27 78 351
1728

27

4 E7(+7) 56 133 912
8645

133

3 E8(+8) 248
3875

?
1
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Conclusions

3-forms in 3 dimensions: 248 ⊕ 3875 ⊕ 147250 of E8

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304
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Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

We find complete agreement with all the known
supergravity results, for which E11 provides an
11-dimensional origin
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We find complete agreement with all the known
supergravity results, for which E11 provides an
11-dimensional origin

We also predict the massive deformations in D = 8 and
the D-forms in any dimension D below 10
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Conclusions

3-forms in 3 dimensions: 248 ⊕ 3875 ⊕ 147250 of E8

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

We find complete agreement with all the known
supergravity results, for which E11 provides an
11-dimensional origin

We also predict the massive deformations in D = 8 and
the D-forms in any dimension D below 10

E11 provides a completely unified description of all
supergravities and it encodes all their dynamical
features

E11 and M-theory – p. 32/32
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