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1 Problems on classical systems

The main source for this part is [1, Sec 2.1, 2.2, 2.3], and, especially for how GHD applies to
free theories, [2]. This covers parts of the first three lectures. However, the free classical particle
example was not really done, so I develop it a bit more in these problems.

Generic Galilean systems and ideal gas

A Galiglean invariant gas typically has three conserved quantities

Q0 = N =
N∑
n=1

1, Q1 = P =
N∑
n=1

pn, Q2 = H =
N∑
n=1

p2
n

2
+

1

2

N∑
n,m=1

V (xn − xm) (1.1)

where V (x) is the pair-interaction potential. The associated densities Qi =
∫

dx qi(x) are

q0(x) =
∑
n

δ(x−xn), q1(x) =
∑
n

pnδ(x−xn), q2(x) =
∑
n

(p2
n

2
+

1

2

∑
m

V (xn−xm)
)
δ(x−xn).

(1.2)
Likewise qi(x, t) is obtained by replacing xn by xn(t) and pn by pn(t). The Gibbs states have
Boltzmann weight

e−β(H−µN−vP ). (1.3)

That is, the grand-canonical partition function is

Z =

∞∑
N=0

1

N !

∫
xn∈[0,L] ∀n

∏
n

dxndpn e
−β(H−µN−vP ). (1.4)

We denote average observables, evaluated at position 0 and time 0, in this state, as

q0, q1, q2, etc. (1.5)

1. Show that the conservation laws

∂tqi(x, t) + ∂xji(x, t) = 0, i = 0, 1, 2 (1.6)

hold, with
j0(x, t) = q1(x, t). (1.7)
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Calculate j1(x, t), j2(x, t).

2. Consider the “ideal gas” case V = 0. Show that averages take the form

q0 =

∫
dp f(p), q1 =

∫
dp pf(p), q2 =

∫
dp

p2

2
f(p) (1.8)

and

j0 =

∫
dp pf(p), j1 =

∫
dp p2f(p), j2 =

∫
dp

p3

2
f(p) (1.9)

where f(p) has the Gaussian form

f(p) = Ce−β(p2/2−µ−vp). (1.10)

for some C (calculate it).

3. Galilean invariance implies, in general,

j0 = q1, j1 = P (q0, q2) +
q2

1

q0
, j2 =

3q1

2q0
P (q0, q2) +

q2
1

q2
0

. (1.11)

a. Using the statement of question 2, verify these relations in the case of the ideal gas V = 0.
In this case, determine the pressure function P (q0, q2).
b. In general, check that these relations from Galilean invariance imply in particular the two
usual hydrodynamic equations

∂tρ+ ∂x(vρ) = 0, ∂tv + v∂xv = −1

ρ
∂xP (ρ, e) (1.12)

where ρ = q0, vρ = q1 and e = q2. Write down the third equation, for e.

Free gas

The free gas is not the ideal gas. In the free gas, we take into consideration that relaxation is
towards the states which account for all conserved quantities. There is a one-parameter family
of conserved quantities

Qp =
∑
n

δ(p− pn) (1.13)

and the Boltzmann weight are
e−

∫
dpw(p)Qp . (1.14)

The grand-canonical partition function is

Z =
∞∑
N=0

1

N !

∫
xn∈[0,L] ∀n

∏
n

dxndpn e
−

∑
n w(pn). (1.15)

We define
qp(x, t) =

∑
n

δ(x− xn)δ(p− pn). (1.16)
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1. Show that the conservation laws

∂tqp(x, t) + ∂xjp(x, t) = 0, (1.17)

hold, and calculate jp(x, t).

2. Evaluate the averages
qp, jp (1.18)

as functionals of the function p 7→ w(p). You do not need to perform the integral
∫

dp e−w(p).
Verify that

jp = pqp. (1.19)

Once we have this, the hydrodynamic equation is obtained by making the stationary states
space-time dependent, that is w(p) becomes w(p, x, t), so that qp becomes ρ(p, x, t) and jp be-
comes pρ(p, x, t). The equation is simply the conservation law, for these space-time dependent
stationary states

∂tρ(p, x, t) + p∂xρ(p, x, t) = 0. (1.20)

This is the Liouville equation for conservation of phase-space element, or the collisionless Boltz-
mann equation.

The ideal gas assumes that there is a little bit of interaction, just enough to destroy the higher
conserved quantities and to keep only N, P, H, while the expressions of densities and currents
are still well approximated by their free-particle form. In higher dimensions, this is a good
approximation. But in one dimension, the dyamics, even with a bit of interaction that destroys
higher conserved quantities, is still well described by accounting for these conserved quantities.
Their decay over time is slow enough. The full theory for that is, of course, Boltzmann equation,
which is very special in one dimension, making decay of higher conserved quantities very slow.

2 Problems on general structure of Euler-scale hydrodynamics

Again, this is from [1, Sec 2.1, 2.2, 2.3], except question 3.
The general Euler-scale hydrodynamic equation, in its quasi-linear forrm, is

∂tqi + A j
i ∂xqj = 0 (2.1)

where

A j
i =

∂ji
∂qj

(2.2)

is the flux Jacobian. Another important matrix is the covariance matrix

Cij = 〈Qiqj〉cβ = − ∂qi
∂βj

. (2.3)

We showed in class that the matrix C is symmetric, and that B = AC is also symmetric.

1. Using the fact that C is symmetric, argue, using the Poincaré lemma, that there must
exist a function f(β) such that

qi =
∂f

∂βi
. (2.4)
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Of course, this function is the specific free energy,

f = − lim
L→∞

L−1 logZ. (2.5)

2. Using the fact that B is symmetric, argue, again using the Poincaré lemma, that there
must exist a function g(β) such that

ji =
∂g

∂βi
. (2.6)

The function g is called the free energy flux. Here, we don’t have an explicit expression of g in
terms of traces etc.; but we know it must exist.

3. For the ideal gas, we have from (1.4)

Z =
∞∑
N=0

1

N !
LN
(∫

dp e−w(p)
)N

= exp
[
L

∫
dp e−w(p)

]
(2.7)

where w(p) = β(p2/2− µ− vp) = β2p2/2 + β1p+ β0, identifying β0 = −µβ, β1 = −vβ, β2 = β
using the numbering (1.1) (recall in βi, the i is an index, not a power). Therefore

f = −
∫

dp e−w(p). (2.8)

Verify that (2.4) reproduces (1.8). Using (1.9), evaluate g.

4. Using the Euler-scale equations (2.1), verify that the entropy density and currents, defined
as

s =
∑
i

βiqi − f, j =
∑
i

βiji − g, (2.9)

satisfy the conservation law
∂ts + ∂xj = 0. (2.10)

Thus, entropy conservation is a consequence of the general properties of the equations of state.

3 Problems on GHD, part 1

We have derived in class the following formula for the effective velocity

veff(p) = p−
∫

dp′ ρ(p′)ϕ(p, p′)(veff(p)− veff(p′)). (3.1)

where ϕ(p, p′) represents the shift incurred by a particle with “quasi-momentum” p upon meeting
a particle with quasi-momentum p′. The case of the hard rods is

ϕ(p, p′) = −a (3.2)
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where a is the rod length – that is, the shift is independent of the velocity of the rod. The
general formula could be seen to arise from a dynamical equation for quasi-particles (here I use
θn instead of pn)

yn = xn +
1

2

∑
m6=n

ϕ(θn − θm) sgn(xn − xm), ẏn = θn. (3.3)

1. Solve explicitly for veff(p) in terms of p, of the total paritcle density ρ̄ =
∫

dp ρ(p), and
of the average velocity ū = ρ̄−1

∫
dp pρ(p). You should get

veff(p) =
p− ūaρ̄
1− aρ̄

(3.4)

2. Consider the problem of a single free particle with Hamiltonian

H = −1

2

∂2

∂x2
(3.5)

and initial wave function
ψ(x) = eipxA(x/`). (3.6)

Show that
(e−iH`tψ)(`x) = zte

ip`xA(x− pt) +O(`−1) (3.7)

where zt is a pure phase, |zt| = 1. That is, the large-scale time evolution corresponds to a simple
shift of the slowly-varying amplitude modulation (wave packet). A good way is to Fourier
transform the amplitude A(x/`), and use the fact that

Heipx =
p2

2
eipx. (3.8)

3. Show that the transformation of coordinates

yn = xn +
1

2

∑
m 6=n

ϕ(θn − θm) sgn(xn − xm) (3.9)

pn = θn +
∑
m6=n

φ(θn − θm)δ(xn − xm), (3.10)

where ϕ(θ) = dφ(θ)/dθ, is a canonical transformation in the sense of classical dynamical systems,
from canonical coordinates xn, pn to canonical coordinates yn, θn. Conclude that the dynamical
system of quasi-particles (3.3) has classical Hamiltonian

H =
∑
n

θ2
n

2
. (3.11)

Hint: use a clever generating function for canonical transformation (related to the phase of the
Bethe ansatz wave function!).
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