Type I and II supersymmetric backgrounds

George Papadopoulos

King's College London

Strings 2007 Madrid

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Based on

Type I

U Gran, P Lohrmann, GP, hep-th/0602250

U Gran, D Roest, P Sloane, GP, hep-th/0703143

U Gran, D Roest, GP, to appear

Type IIB

U Gran, J Gutowski, GP, hep-th/0501177, hep-th/0505074, arXiv:0705.2208 U Gran, J Gutowski, D Roest, GP, hep-th/0606049, and to appear

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Outline

Killing spinor equations

KSE Holonomy Gauge symmetry Holonomy vs gauge symmetry

Geometry of all type I backgrounds

Gravitino Dilatino Geometry Holonomy reduction

Type IIB

Status N = 31N = 2

Conclusions

KSE	Туре I	Type IIB	Conclusions
• 0 0 0 0	00000000	0000	
Killing spinor equation	15		

A parallel transport equation for the supercovariant connection $\mathcal D$

 $|\delta\psi_A| = \mathcal{D}_A \epsilon = \nabla_A \epsilon + \Sigma_A (e, F) \epsilon = 0$

and possibly algebraic equations

 $\delta\lambda| = \mathcal{A}(e, F)\epsilon = 0$

where ∇ is the Levi-Civita connection, $\Sigma(e, F)$ a Clifford algebra element

$$\Sigma(e,F) = \sum_{k} \Sigma_{[k]}(e,F) \Gamma^{[k]}$$

e frame and F fluxes, ϵ spinor, Γ gamma matrices.

Can the KSE be solved without any assumptions on the metric and fluxes?

KSE	Туре I	Type IIB	Conclusions
○●○○○	00000000	0000	
Holonomy			

For generic D=11 [Hull, Duff, Liu] and IIB [Tsimpis, GP] backgrounds

 $hol(\mathcal{D}) \subseteq SL(32,\mathbb{R})$

because $\mathcal{R} = [\mathcal{D}, \mathcal{D}]$ takes values in $\mathfrak{sl}(32, \mathbb{R})$.

For backgrounds with *L* parallel and *N* Killing spinors, $N \leq L$,

$$\begin{aligned} \mathsf{hol}(\mathcal{D}) &\subseteq SL(32-L,\mathbb{R}) \ltimes \oplus_L \mathbb{R}^{32-L} \\ &= \operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L) \subset SL(32,\mathbb{R}) \end{aligned}$$

i.e. the isotropy group $\text{Stab}(\epsilon_1, \ldots, \epsilon_L)$ of any number of spinors in $SL(32, \mathbb{R})$ is non-trivial.

A consequence is

• There may be backgrounds with number L of parallel and so Killing spinors, however see preons (N = 31)

KSE	Type I	Type IIB	Conclusions
○○●○○	00000000	0000	
Gauge symmetry			

The gauge symmetry G of the KSE are the (local) transformations such that

 $g^{-1}\mathcal{D}(e,F)g = \mathcal{D}(e^g,F^g), \quad g^{-1}\mathcal{A}(e,F)g = \mathcal{A}(e^g,F^g)$

i.e. preserve the form of the Killing spinor equations.

D=11 SUGRA: G = Spin(10, 1)

IIB SUGRA: $G = Spin(9, 1) \times U(1)$

Type I: G = Spin(9, 1)

- Backgrounds related by a gauge transformation are identified
- ▶ In type II theories $G \subset SL(32, \mathbb{R})$. In particular, 2 generic spinors ϵ_1, ϵ_2 in D=11 and IIB have isotropy group stab (ϵ_1, ϵ_2) in G, stab $(\epsilon_1, \epsilon_2) = \{1\}$
- ▶ In type I, the gauge and the holonomy groups coincide, *Spin*(9, 1)

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Holonomy vs gauge symmetry

Isotropy groups of one spinor in $SL(32, \mathbb{R})$ and in the gauge group G[(D = 11)Bryant, J Figueroa O'Farrill; (IIB) U Gran, J Gutowski, GP].

N = 1	Stab	stab
D = 11	$SL(31,\mathbb{R})\ltimes\mathbb{R}^{31}$	$SU(5), Spin(7) \ltimes \mathbb{R}^9$
IIB	$SL(31,\mathbb{R})\ltimes\mathbb{R}^{51}$	$Spin(7) \ltimes \mathbb{R}^{\circ}, SU(4) \ltimes \mathbb{R}^{\circ}, G_2$
TypeI	$Spin(7) \ltimes \mathbb{R}^8$	$Spin(7) \ltimes \mathbb{R}^8$

Isotropy groups for 31 spinors in $SL(32, \mathbb{R})$ and in the gauge group *G*.

N = 31	Stab	stab
D = 11	\mathbb{R}^{31}	{1}
IIB	\mathbb{R}^{31}	$\{1\}$

- Since the gauge group is much smaller that the holonomy group there are several geometric types for the same number of Killing spinors
- Identifying backgrounds with larger gauge groups may lead to significant simplification

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Spinorial geometry

The ingredients of the spinorial method to solve the supergravity KSE [J Gillard, U Gran, GP] are

- Gauge symmetry of KSE It is used to choose the Killing spinor directions or their normals. Very effective for backgrounds with small and large number of susies
- Spinors in terms of forms Convenient notation
- An oscillator basis in the space of Dirac spinors
 Allows to extract the geometric information using the linearity of KSE

KSE	Type I	Type IIB	Conclusions
00000	•0000000	0000	

Type I; Gravitino

The gravitino Killing spinor equation is

$$\mathcal{D}\epsilon = \hat{\nabla}\epsilon = \nabla\epsilon + \frac{1}{2}H\epsilon = 0$$

where $\hat{\nabla}$ is a metric connection with skew-symmetric torsion *H*, and so for generic backgrounds

 $\operatorname{hol}(\hat{\nabla}) = G = \operatorname{Spin}(9, 1)$

In addition

$$\hat{\nabla}\epsilon = 0 \Rightarrow \hat{R}\epsilon = 0$$

So either

$$\operatorname{Stab}(\epsilon) = \{1\} \Longrightarrow \hat{R} = 0$$

all spinors are parallel and M is parallelizable (group manifold if dH = 0) [Figueroa O'Farrill, Kawano, Yamaguchi] or

 $\operatorname{Stab}(\epsilon) \neq \{1\} \Longrightarrow \epsilon \text{ singlets}$

 $\operatorname{Stab}(\epsilon) \subset \operatorname{Spin}(9,1)$ and $\operatorname{hol}(\hat{\nabla}) \subseteq \operatorname{Stab}(\epsilon)$.

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Parallel spinors

L	$\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L)$	parallel ϵ
1	$Spin(7) \ltimes \mathbb{R}^8$	$1 + e_{1234}$
2	$SU(4) \ltimes \mathbb{R}^8$	1
3	$Sp(2) \ltimes \mathbb{R}^8$	1, $i(e_{12} + e_{34})$
4	$(SU(2) \times SU(2)) \ltimes \mathbb{R}^8$	$1, e_{12}$
5	$SU(2)\ltimes \mathbb{R}^8$	1, e_{12} , $e_{13} + e_{24}$
6	$U(1)\ltimes \mathbb{R}^8$	1, e_{12} , e_{13}
8	\mathbb{R}^{8}	1, e_{12} , e_{13} , e_{14}
2	G_2	$1 + e_{1234}, \ e_{15} + e_{2345}$
4	SU(3)	$1, e_{15}$
8	SU(2)	1, e_{12} , e_{15} , e_{25}
16	{1}	Δ^+_{16}

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

- There are differences with the holonomy groups that appear in the Berger classification
- There are compact and non-compact isotropy groups which lead to geometries with different properties
- ► There is a restriction on the number of parallel spinors. This is a difference with the type II case
- ▶ The isotropy group of more than 8 spinors is {1}
- ► Identify the Majorana-Weyl representation Δ_{16}^+ of Spin(9, 1) with a real subspace of $\Lambda^{ev}(\mathbb{C}^5)$ with respect to the reality condition $\mathcal{R} = \Gamma_{6789}*$. For example, the spinor 1 is complex Weyl and the Majorana components are

```
1 + e_{1234}, i(1 - e_{1234})
```

where $e_{1234} = e_1 \wedge e_2 \wedge e_3 \wedge e_4$ and e_i hermitian basis in \mathbb{C}^5 .

KSE	Type I	Type IIB	Conclusions
00000	○○○●○○○○	0000	
Dilatino			

The dilatino KSE is

$$d\Phi\zeta - \frac{1}{2}H\zeta = 0$$

Some of the parallel spinors $\epsilon_1, \ldots, \epsilon_L$ may not solve the dilatino KSE. To choose the solutions $\zeta = \sum_r f_r \epsilon_r$ of the dilatino KSE use as gauge symmetry transformations,

 $\Sigma(\mathcal{P}) = \operatorname{Stab}(\mathcal{P})/\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L)$

where \mathcal{P} is the *L*-plane of parallel spinors and $\text{Stab}(\mathcal{P})$ are those transformations of Spin(9, 1) that preserve \mathcal{P} .

- Using the Σ(P) groups the Killing spinors can be chosen in all cases. Moreover the dilatino Killing spinor can be solved.
- If N > L/2, it is convenient to use Σ(P) to choose the normals to the Killing spinors.

00		Type I ○○○○●○○○	Type IIB 0000	Conclusion
	L	$\mathbf{S}tab(\epsilon_1,\ldots,\epsilon_L)$	$\Sigma(\mathcal{P})$	
	1	$Spin(7) \ltimes \mathbb{R}^8$	Spin(1,1)	
	2	$SU(4)\ltimes \mathbb{R}^8$	$Spin(1,1) \times U(1)$	
	3	$Sp(2)\ltimes \mathbb{R}^8$	$Spin(1,1) \times SU(2)$	
	4	$(SU(2) \times SU(2)) \ltimes \mathbb{R}^8$	$Spin(1,1) \times Sp(1) \times Sp(1)$	
	5	$SU(2)\ltimes \mathbb{R}^8$	$Spin(1,1) \times Sp(2)$	
	6	$U(1)\ltimes \mathbb{R}^8$	$Spin(1,1) \times SU(4)$	
	8	\mathbb{R}^{8}	$Spin(1,1) \times Spin(8)$	
	2	G_2	Spin(2,1)	
	4	SU(3)	$Spin(3,1) \times U(1)$	
	8	SU(2)	$Spin(5,1) \times SU(2)$	
	16	{1}	<i>Spin</i> (9, 1)	

KSE

The Σ(P) groups are a product of a Spin group and a R-symmetry group, reminiscent of lower-dimensional supergravities.

E 0000		Type I ○○○○○●○○	Type IIB 0000	Conclusion
	L	$\Sigma(\mathcal{P})$	Ν	
	1	Spin(1,1)	1(1)	
_	2	$Spin(1,1) \times U(1)$	1(1), 2(1)	
_	3	$Spin(1,1) \times SU(2)$	1(1), 2(1), <mark>3(1)</mark>	
_	4	$Spin(1,1) \times Sp(1) \times Sp(1)$	1(1), 2(1), 3(1), 4(1)	
_	5	$Spin(1,1) \times Sp(2)$	1(1), 2(1), 3(1), 4(1), 5(1)	
	6	$Spin(1,1) \times SU(4)$	1(1), 2(1), 3(1), 4(1), 5(1), 6(1)	
_	8	$Spin(1,1) \times Spin(8)$	1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1)	, 8(1)
	2	Spin(2,1)	1(1), <mark>2(1)</mark>	
_	4	$Spin(3,1) \times U(1)$	1(1), 2(2), 3(2), 4(1)	
_	8	$Spin(5,1) \times SU(2)$	1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1)	, 8(1)
_	16	<i>Spin</i> (9, 1)	8(2), 10(1), 12(1), 14(1), 16(1)	

- ► The cases noted in red are those for which all parallel spinors are Killing *N* = *L*, and the case in blue does not occur
- The number in parenthesis denotes the different geometries for a given N

KSE	Type I	Type IIB	Conclusions
00000	00000000	0000	

Geometry

~		
The number of ∇ -paral	lel 1-forms depends on	the topology of $Stab(\epsilon)$.

Stab	1 - forms	algebras
$K \ltimes \mathbb{R}^8$	e^-	\mathbb{R}
G_2	e^0, e^1, e^5	$\mathbb{R}\oplus^2\mathfrak{u}(1),\;\mathfrak{sl}(2,\mathbb{R})$
<i>SU</i> (3)	e^0, e^1, e^5, e^6	$\mathbb{R}\oplus^{3}\mathfrak{u}(1),\ \mathfrak{sl}(2,\mathbb{R})\oplus\mathfrak{u}(1),\mathbb{R}\oplus\mathfrak{su}(2),\ \mathfrak{cw}_{4}$
SU(2)	$e^0, e^1, e^2, e^5, e^6, e^7$	$\mathbb{R}\oplus^{5}\mathfrak{u}(1),\ \mathfrak{sl}(2,\mathbb{R})\oplus\mathfrak{su}(2),\ \mathfrak{cw}_{6}$

- ▶ If Stab = $K \ltimes \mathbb{R}^8$ is non-compact, then the spacetime admits CR-type of structures (L > 1) which depend on *K*. Most of *H* is determined in terms of the geometry.
- If Stab = K is compact, then the spacetime is a principal bundle equipped with a connection λ . The fibre is spanned by the orbits of the vector fields and base space a manifold admits a K-type of structure compatible with a connection with skew-symmetric torsion. All of H is determined in terms of the geometry.

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Holonomy Reduction

Consider $SU(4) \ltimes \mathbb{R}^8$. Since hol $(\hat{\nabla}) \subseteq SU(4) \ltimes \mathbb{R}^8$, the expected $\hat{\nabla}$ -parallel forms are

 e^- , $e^- \wedge \omega_I$, $e^- \wedge \operatorname{Re} \chi$, $e^- \wedge \operatorname{Im} \chi$

However, the field equations,

$$dH = 0$$
, $\operatorname{hol}(\hat{\nabla}) \subseteq SU(4) \ltimes \mathbb{R}^8$

imply that

$$au_1 = H_{+ij}\omega_I^{ij}e^+ , \quad au_2 = \partial_+\Phi e^+ , \ au_3 = \mathcal{N} , \quad au_4 = 2d\Phi - heta_{\omega_I} ,$$

which do not vanish for N < L, are ALSO $\hat{\nabla}$ -parallel. The consequences for $K \ltimes \mathbb{R}^8$ cases are

- The existence of N < L supersymmetric backgrounds requires that hol(∇̂) ⊂ Stab(ε).
- If hol(∇̂) = Stab(ε), then the gravitino KSE implies the dilatino one and ALL parallel are Killing L = N, *i.e.* there are no N < L backgrounds</p>

KSE	Type I	Type IIB	Conclusions
00000	00000000	●○○○	
Status in IIB			

The Killing spinor equations of IIB supergravity [Schwarz, West, Howe] have been solved in the following cases

- ▶ N = 1: Four different types of geometry. The Killing spinors are represented by orbits with isotropy groups $Spin(7) \ltimes \mathbb{R}^8$, $SU(4) \ltimes \mathbb{R}^8$ and G_2 [U Gran, J Gutowski, GP]
- ▶ N = 31: Supersymmetry enhances to N = 32 [U Gran, J Gutowski, D Roest, GP]
- ▶ N = 32: The maximally supersymmetric backgrounds are $\mathbb{R}^{9,1}$, $AdS_5 \times S^5$ [Schwarz], and the plane wave [Blau, J Figueroa O'Farrill, Hull, GP]. This list is complete [J Figueroa O'Farrill, GP].
- N > 24 backgrounds are homogeneous [J Figueroa O'Farrill, E. Hackett-Jones, G Moutsopoulos]
- ► Early indications suggest that *N* > 28 backgrounds are maximally supersymmetric [U Gran, J Gutowski, D Roest, GP]

Much more progress has been made under additional assumptions like choosing certain invariant Killing spinors or assuming that the spacetime is invariant under certain isometries.

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

N = 31 is not IIB

The 31 Killing spinors span a hyperplane and have a unique normal ν . The gauge symmetry can be used to choose the normal ν as

$\operatorname{stab}(\nu)$	ν
$Spin(7) \ltimes \mathbb{R}^8$	$(f + ig)(e_5 + e_{12345})$
$SU(4) \ltimes \mathbb{R}^8$	$(f + ig)e_5 + (h + ik)e_{12345}$
G_2	$f(e_5 + e_{12345}) + if(e_1 + e_{234})$

Choose the Killing spinors orthogonal to ν . Then

 $\mathcal{A}\epsilon_r=0$, $r=1,\ldots 31$

implies that

P = G = 0

The remaining KSE are linear over the complex numbers and so the number of Killing spinors preserved is even. So there are no N = 31 backgrounds in IIB (preons).

- There are no IIA preons [Bandos, Azcarraga, Varela]
- ▶ There are no *D* = 11 preons [U Gran, J Gutowski, D Roest, GP] and [J Figueroa O'Farrill, S Gadhia]

KSE	Type I	Type IIB	Conclusions
00000	00000000	○○●○	

N = 2 with P = G = 0

This is a special case of N = 1 because if P = G = 0, then IIB backgrounds preserve even number of supersymmetries. There are four different types of geometry that can arise [U Gran, J Gutowski, GP].

$\operatorname{stab}(\epsilon)$	ϵ	Vectors/Forms
$Spin(7) \ltimes \mathbb{R}^8$	$(f + ig)(1 + e_{1234})$	$e^-, abla_A e^-=0$
$SU(4) \ltimes \mathbb{R}^8$ (generic)	$(f + ig)1 + (h + ik)e_{1234}$	e^- Killing $e^- \wedge de^- = 0$
$SU(4) \ltimes \mathbb{R}^{8}$ (pure)	f1	e^- Killing $e^- \wedge de^- \neq 0$
<i>G</i> ₂	$f(1+e_{1234})+if(e_{51}+e_{5234})$	$f^2 e^0$ Killing, $d(f^2 e^1) = d(f^2 e^5) = 0$

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Moreover the transverse geometries to the lightcone for the $K \ltimes \mathbb{R}^8$ cases and the three-directions in the G_2 case are

$stab(\epsilon)$	Transverse structure	Conditions
$Spin(7) \ltimes \mathbb{R}^8$	Holonomy Spin(7)	$ ilde{d}\phi=0$
$\frac{SU(4) \ltimes \mathbb{R}^8}{(\text{generic})}$	Almost hermitian $SU(4)$	$W_1, W_2, W_3, W_4, W_5 \neq 0$ determined by Killing spinor
$SU(4) \ltimes \mathbb{R}^{8}$ (pure)	Relatively balanced $SU(4)$ Hermitian	$ ilde{d}\omega^3=W_4\wedge\omega^3,W_1=W_2=0 \ W_4=W_5$
G_2	$co - symplectic G_2$	$ ilde{d}\stararphi=0$

► AdS_5 black holes [Gutowski, Reall] uplift to pure $SU(4) \ltimes \mathbb{R}^8$ geometries

▶ The LLM [Lin, Lunin, Maldacena] solution admits a co-cymplectic G₂ structure

KSE	Туре I	Type IIB	Conclusions
00000	00000000	0000	
Conclusions			

- The Killing spinor equations of type I supergravities have been solved in ALL cases. The conditions that are imposed on the geometry of these backgrounds by supersymmetry have been found.
- ▶ Much progress has been done in IIB. The Killing spinor equations have been solved for N = 1 and N = 2 (P = G = 0), and the geometry of the backgrounds has been understood.
- IIB N = 31 backgrounds are maximally supersymmetric. The N = 32 backgrounds have been classified. The N > 24 backgrounds are homogeneous, and it is likely that the N > 28 backgrounds are maximally supersymmetric.

KSE	Type I	Type IIB	Conclusions
00000	0000000	0000	

Type I susy backgrounds

L	$\mathbf{S}tab(\epsilon_1,\ldots,\epsilon_L)$	$\Sigma(\mathcal{P})$
1	$Spin(7) \ltimes \mathbb{R}^8$	Spin(1,1)
2	$SU(4)\ltimes \mathbb{R}^8$	$Spin(1,1) \times U(1)$
3	$Sp(2)\ltimes \mathbb{R}^8$	$Spin(1,1) \times SU(2)$
4	$(SU(2) \times SU(2)) \ltimes \mathbb{R}^8$	$Spin(1,1) \times Sp(1) \times Sp(1)$
5	$SU(2)\ltimes \mathbb{R}^8$	$Spin(1,1) \times Sp(2)$
6	$U(1)\ltimes \mathbb{R}^8$	$Spin(1,1) \times SU(4)$
8	\mathbb{R}^{8}	$Spin(1,1) \times Spin(8)$
2	G_2	Spin(2,1)
4	SU(3)	$Spin(3,1) \times U(1)$
8	SU(2)	$Spin(5,1) \times SU(2)$
16	{1}	<i>Spin</i> (9, 1)