Type I and II supersymmetric backgrounds

George Papadopoulos

King's College London

Strings 2007 Madrid

Based on

Type I

U Gran, P Lohrmann, GP, hep-th/0602250

U Gran, D Roest, P Sloane, GP, hep-th/0703143

U Gran, D Roest, GP, to appear

Type IIB

U Gran, J Gutowski, GP, hep-th/0501177, hep-th/0505074, arXiv:0705.2208 U Gran, J Gutowski, D Roest, GP, hep-th/0606049, and to appear

Outline

[Killing spinor equations](#page-3-0)

[KSE](#page-3-0) [Holonomy](#page-4-0) [Gauge symmetry](#page-5-0) [Holonomy vs gauge symmetry](#page-6-0)

[Geometry of all type I backgrounds](#page-8-0)

[Gravitino](#page-8-0) [Dilatino](#page-11-0) [Geometry](#page-14-0) [Holonomy reduction](#page-15-0)

[Type IIB](#page-16-0)

[Status](#page-16-0) $N = 31$ $N = 31$ $N = 2$ $N = 2$ $N = 2$

[Conclusions](#page-20-0)

A parallel transport equation for the supercovariant connection D

 $\delta \psi_A | = \mathcal{D}_A \epsilon = \nabla_A \epsilon + \Sigma_A (e, F) \epsilon = 0$

and possibly algebraic equations

 $|\delta \lambda| = \mathcal{A}(e, F) \epsilon = 0$

where ∇ is the Levi-Civita connection, $\Sigma(e, F)$ a Clifford algebra element

$$
\Sigma(e,F)=\sum_{k}\Sigma_{[k]}(e,F)\Gamma^{[k]}
$$

e frame and *F* fluxes, ϵ spinor, Γ gamma matrices.

Can the KSE be solved without any assumptions on the metric and fluxes?

For generic D=11 [Hull, Duff, Liu] and IIB [Tsimpis, GP] backgrounds

 $hol(\mathcal{D}) \subseteq SL(32,\mathbb{R})$

because $\mathcal{R} = [\mathcal{D}, \mathcal{D}]$ takes values in $\mathfrak{sl}(32, \mathbb{R})$.

For backgrounds with *L* parallel and *N* Killing spinors, $N \leq L$,

$$
\text{hol}(\mathcal{D}) \quad \subseteq \quad SL(32-L, \mathbb{R}) \ltimes \bigoplus_{L} \mathbb{R}^{32-L} \\
= \quad \text{Stab}(\epsilon_1, \ldots, \epsilon_L) \subset SL(32, \mathbb{R})
$$

i.e. the isotropy group $Stab(\epsilon_1, \ldots, \epsilon_l)$ of any number of spinors in $SL(32, \mathbb{R})$ is non-trivial.

A consequence is

 \triangleright There may be backgrounds with number *L* of parallel and so Killing spinors, however see preons $(N = 31)$

The gauge symmetry *G* of the KSE are the (local) transformations such that

 $g^{-1} \mathcal{D}(e, F) g = \mathcal{D}(e^g, F^g) \ , \ \ \ g^{-1} \mathcal{A}(e, F) g = \mathcal{A}(e^g, F^g)$

i.e. preserve the form of the Killing spinor equations.

D=11 SUGRA: $G = Spin(10, 1)$

IIB SUGRA: $G = Spin(9, 1) \times U(1)$

Type I: $G = Spin(9, 1)$

- \blacktriangleright Backgrounds related by a gauge transformation are identified
- **In type II theories** *G* ⊂ \subset *SL*(32, R). In particular, 2 generic spinors ϵ_1 , ϵ_2 in D=11 and IIB have isotropy group stab(ϵ_1, ϵ_2) in *G*, stab(ϵ_1, ϵ_2) = {1}
- In type I, the gauge and the holonomy groups coincide, $Spin(9, 1)$

Holonomy vs gauge symmetry

Isotropy groups of one spinor in $SL(32, \mathbb{R})$ and in the gauge group G $[(D = 11)$ Bryant, J Figueroa O'Farrill; (IIB) U Gran, J Gutowski, GP].

Isotropy groups for 31 spinors in *SL*(32, R) and in the gauge group *G*.

- \triangleright Since the gauge group is much smaller that the holonomy group there are several geometric types for the same number of Killing spinors
- \triangleright Identifying backgrounds with larger gauge groups may lead to significant simplification

The ingredients of the spinorial method to solve the supergravity KSE [J Gillard, U Gran, GP] are

 \triangleright Gauge symmetry of KSE It is used to choose the Killing spinor directions or their normals. Very effective for backgrounds with small and large number of susies

- \triangleright Spinors in terms of forms Convenient notation
- \triangleright An oscillator basis in the space of Dirac spinors Allows to extract the geometric information using the linearity of KSE

Type I; Gravitino

The gravitino Killing spinor equation is

$$
\mathcal{D}\epsilon = \hat{\nabla}\epsilon = \nabla\epsilon + \frac{1}{2}H\epsilon = 0
$$

where $\hat{\nabla}$ is a metric connection with skew-symmetric torsion *H*, and so for generic backgrounds

 $hol(\hat{\nabla}) = G = Spin(9,1)$

In addition

$$
\hat{\nabla}\epsilon = 0 \Rightarrow \hat{R}\epsilon = 0
$$

So either

$$
Stab(\epsilon) = \{1\} \Longrightarrow \hat{R} = 0
$$

all spinors are parallel and *M* is parallelizable (group manifold if $dH = 0$) [Figueroa] O'Farrill, Kawano, Yamaguchi] or

 $Stab(\epsilon) \neq \{1\} \Longrightarrow \epsilon$ singlets

 $\text{Stab}(\epsilon) \subset \text{Spin}(9, 1)$ and $\text{hol}(\hat{\nabla}) \subset \text{Stab}(\epsilon)$.

Parallel spinors

- \triangleright There are differences with the holonomy groups that appear in the Berger classification
- \triangleright There are compact and non-compact isotropy groups which lead to geometries with different properties
- \triangleright There is a restriction on the number of parallel spinors. This is a difference with the type II case
- \triangleright The isotropy group of more than 8 spinors is $\{1\}$
- ► Identify the Majorana-Weyl representation Δ_{16}^+ of *Spin*(9, 1) with a real subspace of $\Lambda^{\text{ev}}(\mathbb{C}^5)$ with respect to the reality condition $\mathcal{R} = \Gamma_{6789}$ *. For example, the spinor 1 is complex Weyl and the Majorana components are

```
1 + e_{1234}, i(1 - e_{1234})
```
where $e_{1234} = e_1 \wedge e_2 \wedge e_3 \wedge e_4$ and e_i hermitian basis in \mathbb{C}^5 .

The dilatino KSE is

$$
d\Phi\zeta - \frac{1}{2}H\zeta = 0
$$

Some of the parallel spinors $\epsilon_1, \ldots, \epsilon_l$ may not solve the dilatino KSE. To choose the solutions $\zeta = \sum_{r} f_r \epsilon_r$ of the dilatino KSE use as gauge symmetry transformations,

 $\Sigma(\mathcal{P}) = \text{Stab}(\mathcal{P})/\text{Stab}(\epsilon_1, \ldots, \epsilon_l)$

where P is the *L*-plane of parallel spinors and $Stab(P)$ are those transformations of $Spin(9, 1)$ that preserve P .

- In Using the $\Sigma(\mathcal{P})$ groups the Killing spinors can be chosen in all cases. Moreover the dilatino Killing spinor can be solved.
- If $N > L/2$, it is convenient to use $\Sigma(\mathcal{P})$ to choose the normals to the Killing spinors.

Figure 1 The $\Sigma(\mathcal{P})$ groups are a product of a *Spin* group and a R-symmetry group, reminiscent of lower-dimensional supergravities.

 \blacktriangleright The cases noted in red are those for which all parallel spinors are Killing $N = L$, and the case in blue does not occur

 \triangleright The number in parenthesis denotes the different geometries for a given N

Geometry

- If Stab = $K \ltimes \mathbb{R}^8$ is non-compact, then the spacetime admits CR-type of structures $(L > 1)$ which depend on *K*. Most of *H* is determined in terms of the geometry.
- If Stab $= K$ is compact, then the spacetime is a principal bundle equipped with a connection λ . The fibre is spanned by the orbits of the vector fields and base space a manifold admits a *K*-type of structure compatible with a connection with skew-symmetric torsion. All of *H* is determined in terms of the geometry.

Holonomy Reduction

Consider $SU(4) \ltimes \mathbb{R}^8$. Since hol $(\hat{\nabla}) \subseteq SU(4) \ltimes \mathbb{R}^8$, the expected $\hat{\nabla}$ -parallel forms are

e[−], *e*[−] ∧ω*I*, *e*[−] ∧Re *χ*, *e*[−] ∧Im *χ*

However, the field equations,

$$
dH=0\ ,\quad \text{hol}(\hat\nabla)\subseteq SU(4)\ltimes\mathbb{R}^8
$$

imply that

$$
\tau_1 = H_{+ij}\omega_l^{ij}e^+, \quad \tau_2 = \partial_+\Phi e^+,
$$

$$
\tau_3 = \mathcal{N}, \quad \tau_4 = 2d\Phi - \theta_{\omega_I},
$$

which do not vanish for $N < L$, are ALSO $\hat{\nabla}$ -parallel. The consequences for $K \ltimes \mathbb{R}^8$ cases are

- \blacktriangleright The existence of $N < L$ supersymmetric backgrounds requires that $hol(\hat{\nabla}) \subset Stab(\epsilon).$
- If hol($\hat{\nabla}$) = Stab(ϵ), then the gravitino KSE implies the dilatino one and ALL parallel are Killing $L = N$, *i.e.* there are no $N < L$ backgrounds

The Killing spinor equations of IIB supergravity [Schwarz, West, Howe] have been solved in the following cases

- \blacktriangleright *N* = 1: Four different types of geometry. The Killing spinors are represented by orbits with isotropy groups $Spin(7) \ltimes \mathbb{R}^8$, $SU(4) \ltimes \mathbb{R}^8$ and G_2 [U Gran, J Gutowski, GP]
- \blacktriangleright *N* = 31: Supersymmetry enhances to *N* = 32 [U Gran, J Gutowski, D Roest, GP]
- $N = 32$: The maximally supersymmetric backgrounds are $\mathbb{R}^{9,1}$, $AdS_5 \times S^5$ [Schwarz], and the plane wave [Blau, J Figueroa O'Farrill, Hull, GP]. This list is complete [J Figueroa O'Farrill, GP].
- *N* > 24 backgrounds are homogeneous [J Figueroa O'Farrill, E. Hackett-Jones, G Moutsopoulos]
- Early indications suggest that $N > 28$ backgrounds are maximally supersymmetric [U Gran, J Gutowski, D Roest, GP]

Much more progress has been made under additional assumptions like choosing certain invariant Killing spinors or assuming that the spacetime is invariant under certain isometries.

$N = 31$ is not IIB

The 31 Killing spinors span a hyperplane and have a unique normal ν . The gauge symmetry can be used to choose the normal ν as

Choose the Killing spinors orthogonal to ν . Then

 $A\epsilon_r = 0$, $r = 1, \ldots, 31$

implies that

 $P = G = 0$

The remaining KSE are linear over the complex numbers and so the number of Killing spinors preserved is even. So there are no $N = 31$ backgrounds in IIB (preons).

- \triangleright There are no IIA preons [Bandos, Azcarraga, Varela]
- **Figure 11 Press** For Figueroa **I** Gran, J Gutowski, D Roest, GP] and [J Figueroa O'Farrill, S Gadhia]

This is a special case of $N = 1$ because if $P = G = 0$, then IIB backgrounds preserve even number of supersymmetries. There are four different types of geometry that can arise [U Gran, J Gutowski, GP].

Moreover the transverse geometries to the lightcone for the $K \ltimes \mathbb{R}^8$ cases and the three-directions in the G_2 case are

 \blacktriangleright *AdS*₅ black holes [Gutowski, Reall] uplift to pure $SU(4) \ltimes \mathbb{R}^8$ geometries

 \triangleright The LLM [Lin, Lunin, Maldacena] solution admits a co-cymplectic G_2 structure

- \triangleright The Killing spinor equations of type I supergravities have been solved in ALL cases. The conditions that are imposed on the geometry of these backgrounds by supersymmetry have been found.
- \triangleright Much progress has been done in IIB. The Killing spinor equations have been solved for $N = 1$ and $N = 2$ ($P = G = 0$), and the geometry of the backgrounds has been understood.
- IIB $N = 31$ backgrounds are maximally supersymmetric. The $N = 32$ backgrounds have been classified. The $N > 24$ backgrounds are homogeneous, and it is likely that the $N > 28$ backgrounds are maximally supersymmetric.

Type I susy backgrounds

