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Duality in dimension eight

• F-theory in dimension 8: type IIB string compactified

on S2 with 24 D7-branes at points of S2
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• data: elliptically fibered K3 surface with 24 singular

fibers (generically)

y2 = x3 + f8(z)x + g12(z)
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• data: elliptically fibered K3 surface with 24 singular

fibers (generically)

y2 = x3 + f8(z)x + g12(z)

• singular fibers at ∆(z) = 4f(z)3 + 27g(z)2
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• Can take a limit1 in which the S2 stretches into a long

tube with 12 of the D7-branes at one end and 12 at the

other end.
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• Can take a limit1 in which the S2 stretches into a long

tube with 12 of the D7-branes at one end and 12 at the

other end.

• j-invariant of the F-theory data is nearly constant in the

middle of the tube

1Morrison–Vafa, arXiv:hep-th/9603161
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• that constant value determines the T 2 metric for a

heterotic dual description
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• that constant value determines the T 2 metric for a

heterotic dual description

• each set of 12 points determines an E8 gauge

field configuration, e.g., via perturbations of the E8

singularity

y2 = x3 + z5
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• More precise version:2 by rescaling (e.g. x �→ x/z2,

y �→ y/z3) get a limit in which the original S2 splits into

two S2’s meeting at a point

• Over each S2 is a rational elliptic surface with section.
(These are NOT the half K3 surfaces of the title.)
2Friedman–Morgan–Witten, arXiv:hep-th/9701162
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• Can blow down the section to give a del Pezzo surface

of degree 1

• Looijenga showed that such surfaces are in one-to-one

correspondance with E8 gauge theory on a (fixed) 2-

torus

• The degeneration corresponds to weak heterotic

coupling
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Heterotic string on elliptic fibrations

• If X has an elliptic fibration, the heterotic string on X

should have an F-theory dual, obtained fibrewise

• Base of F-theory has a family of S2’s:
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• weak heterotic coupling limit is dual to a degeneration

• precise correspondance between data; can be used to

investigate many interesting phenomena on both sides

• X re-emerges as the intersection of the two elliptic

fibrations in the limit
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Duality in dimension seven

• We wish to find a similar picture in dimension 7, starting

from M-theory on a K3 surface
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• There are limits in the space of metrics on K3, and

presumably even in the space of Ricci-flat metrics, with

the following behavior:
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• A very long throat of the form T 3 × [0, R] has opened

up in the middle of the K3 surface.
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• A very long throat of the form T 3 × [0, R] has opened

up in the middle of the K3 surface.

• An observer in the middle sees the two complicated ends

recede; they are the half K3 surfaces
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• we will see presently that each half K3 surface accounts

for the data of an E8 gauge field on T 3
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• Explicit realization of M/heterotic duality in dimension

7. Similar to Hǒrava–Witten but with a more geometric

interpretation for the gauge fields at the ends.

• Again corresponds to weak heterotic coupling
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Application: 4-dimensional duality

• As in the previous case, we can put this into families.

To illustrate this, we simplify our stretched K3 to a

cartoon:
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• Now we can put a family of these together:

• The family of T 3’s emerges as the common boundary
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along which the families of half K3’s meet.

• Can be applied to heterotic string on a Calabi–Yau

3-fold, with its supersymmetric T 3-fibration3.

� Fibrewise duality gives M-theory on a family of K3
surfaces over S3
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along which the families of half K3’s meet.

• Can be applied to heterotic string on a Calabi–Yau

3-fold, with its supersymmetric T 3-fibration3.

� Fibrewise duality gives M-theory on a family of K3
surfaces over S3

� i.e., a fibered G2 manifold

� weak heterotic coupling leads to a stretching limit

� the half-G2’s are 7-manifolds with boundary, whose

common boundary is the Calabi–Yau 3-fold4

3Strominger–Yau–Zaslow
4cf. Donaldson–Thomas
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The half K3 limit

• An observer who stays well within one half of the K3

surface during scaling sees something different:
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• From this perspective, an infinite throat has opened up,
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and the “other” half K3 surface has receded to inifinite

distance.
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distance.

• The physics on the two halves does not decouple: this

is heterotic weak coupling
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and the “other” half K3 surface has receded to inifinite

distance.

• The physics on the two halves does not decouple: this

is heterotic weak coupling

• The physics of the other half K3 surface must be

encoded in the boundary of the manifold-with-boundary



20

Variant: K3 surfaces with frozen
singularities
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• There are M-theory compactifications on certain K3

surfaces with ADE singularities with 3-form flux at the

singular points5

• Allowed values of 3-form flux: k/N (mod Z) where N

is one of the multiplicities in the longest root of the

corresponding root system

• At most 4 singularities, and the total 3-form flux

vanishes

• These can similarly be cut in half along T 3, giving a half

K3 with frozen singularities
5Witten, de Boer et al. (Triples, fluxes, and strings), Atiyah–Witten
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• We can extend T 3 to a long throat as before
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• and also replace the singular point by an asymptotic

tube whose boundary is S3/Γ
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M-theory on manifolds with boundary

• Half K3 surfaces provide an interesting laboratory for

studying M-theory
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M-theory on manifolds with boundary

• Half K3 surfaces provide an interesting laboratory for

studying M-theory

• Hǒrava–Witten: M-theory on a manifold with boundary

must have an E8 gauge field on the boundary, in addition

to bulk fields

• We use coordinates with x ≥ 0 near the boundary; the
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metric is

ds2 =
(

dx

x

)2

+ ds̃2

and the 3-form can be written

C =
dx

x
∧ α + β

• Hǒrava–Witten anomaly analysis for the boundary

theory says:

� The limit of C on the boundary (caputured by β)

equals CS(A3) − 1
2CS(R3) for the gauge connection

A3 and curvature R3 on the boundary
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� α restricted to the boundary provides the B-field there

� the familiar
∫

C ∧ G ∧ G term, together with a new∫
C ∧ X8 term, gives rise to the Green–Schwarz

mechanism on the boundary

• To describe our M-theory vacuum on the half K3 surface,

we need a metric and 3-form field there, as well as an

E8 gauge field on the boundary T 3

• The E8 gauge field on T 3 is the remnant of physics on

the “other half” of the original K3
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Metrics on half K3

• Write X = X+ ∪ X− with X+ ∩ X− = T 3 × [0, 1]

•
→ H1(T 3) → H2(X) → H2(X+)⊕H2(X−) → H2(T 3) →

• H2(X+) has rank 11, and a degenerate negative semi-

definite intersection form with kernel of rank 3

• Moduli: Γ\Gr(16, R
0,8,3), with Γ = ΓE8; precisely the

moduli of an E8 gauge field on T 3
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The 3-form field on half K3

• Morgan–Mrowka–Ruberman: L2 gauge fields on a 4-

manifold with boundary, whose boundary is T 3

• any gauge group G

• anti-self-dual connections correspond to flows in the

space of G-connections; gradient flow for the Chern–

Simons functional

• the limit is a flat connection on T 3
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The 3-form field on half K3

• Morgan–Mrowka–Ruberman: L2 gauge fields on a 4-

manifold with boundary, whose boundary is T 3

• any gauge group G

• anti-self-dual connections correspond to flows in the

space of G-connections; gradient flow for the Chern–

Simons functional

• the limit is a flat connection on T 3
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• thus, a 3-form with the properties we need can be

obtained from an anti-self-dual connection A on the

half K3, via

C = CS(A) − 1
2
CS(R)

where A and R are now connections on the 4-manifold.
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A bold proposal
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A bold proposal

• The three-form field in M-theory can be written in terms

of a (non-propagating) E8-connection A, with

C = CS(A) − 1
2
CS(R)
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• Not new:
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� Witten, Flux Quantization in M-Theory,

arXiv:hep-th/9609122
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• Not new:

� Witten, Flux Quantization in M-Theory,

arXiv:hep-th/9609122
� Diaconescu–Moore–Witten, arXiv:hep-th/0005090

� Adams–Evslin, arXiv:hep-th/0203218

• The kinetic term for C becomes∫
‖ 1
30

tr(F 2) − 1
2
tr(R2)‖



33

quartic in the curvature F



33

quartic in the curvature F

• Need a new kind of gauge invariance: two A’s are gauge

equivalent if they lead to the same C (in bulk)
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quartic in the curvature F

• Need a new kind of gauge invariance: two A’s are gauge

equivalent if they lead to the same C (in bulk)

• The heterotic CS(A) matches across the two half K3’s

• In the frozen singularity models, the 3-form flux should

be interpreted as CS(A) for an E8 connection A

• This matches the observation in “Triples, fluxes, and

strings” that 3-form flux at one half matches CS(A)
for corresponding data on T 3 (up to sign)
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• Can we characterize frozen singularities in terms of data

of this sort? (Atiyah)

Preliminary evidence says yes
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• Can we characterize frozen singularities in terms of data

of this sort? (Atiyah)

Preliminary evidence says yes

• Can every 3-form be written in terms of some A? Or do

we perhaps need to go to an infinite-dimensional group

containing E8? (Witten)

• Perhaps this only makes sense as a quantum theory?
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