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Introduction & Motivation - I

The nature of time in general relativity leads to many deep
� and well-known � conceptual questions.

Since string theory is a theory of quantum gravity one might
hope to address some of these difficult problems in string
theory, in the context of exactly solvable models.

But, in interestingly time-dependent backgrounds one en-
counters a host of new problems...

Among the many problems, today we focus on the crucial
issue of backreaction.

Today I mostly discuss kinematics of certain orbifolds. Talk
II, given by N. Seiberg, will discuss the dynamical issues
further.
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Introduction & Motivation - II

Two well-known sources of important backreaction effects:

No susy ⇒ potential tachyons and IR instabilities

CCC�s⇒ Potential divergences in loop amplitudes and hTµνi

In this talk we describe a simple model of strings in time-
dependent geometry in which the above two effects are un-
der control and yet, string perturbation theory is not well-
deÞned.

InÞnite blueshifts⇒ divergent couplings to gravitons⇒ string
perturbation theory is out of control.

We also Þnd some models, e.g. the �null-brane� do give ex-
amples of time-dependent geometries in string theory which
can be studied in string perturbation theory ⇒ opportunity
for further progress.
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quibble


Actually, with supersymmetry 
there can be cancellations in 
such vev's, even in the presence 
of CCC's. 



Time dependent orbifolds

Since time-dependent backgrounds are difficult to work we
will study orbifolds:

IR1,9/Γ, Γ ⊂ Poincare(1, 9)

This class of models was discussed about 12 years ago by
Horowitz and Steif.

Recently there has been a resurgence of interest and papers
on the subject

Simple example: IR1,1/gZZ
0 :

ds2 = −2dx+dx− + · · ·

gn0 acts by
x+ → enβx+

x− → e−nβx−



Requirements on the background

Spacetime = IR1,9/Γ Γ ⊂ P(1, 9)

What should we choose for Γ ?

� Time-dependent

� ∃ some unbroken SUSY

� No CTC�s

Immediate implications:

Unbroken susy ⇒ null Killing vector ⇒

� Can use lightcone gauge:

� First order time evolution ⇒ No particle production

� A subclass of the pp wave backgrounds

� Results of Figueroa-O�Farrill ⇒

Γ ⊂ G := ¡Spin(7) × IR8
¢ × IR1,9
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Spacetime is foliated by 
slices of constant x^+, and 
we always think of evolution 
in x^+
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Some sources of pathology in time-dependent orbifolds

Consistency conditions for orbifolds by Þnite subgroups of
Euclidean isometries are well known (anomaly cancellation).

We have found several surprises with orbifolds by Γ ⊂ P(1, 9)
for Γ noncompact:

� Fixed points can lead to pathology

� Closed causal curves can lead to pathology

� �Nearly closed null curves�

(∃ closed spacelike geodesics γn with limn→∞ L(γn)→ 0 )

� Explosive twisted sector degeneracies:X
twisted sectors

TrHqL0 q̄L̄0 =∞

(Some Melvin models are ill-deÞned.)

� InÞnite blueshifts.

We will be focusing on the last problem, which is an impor-
tant and probably generic effect.
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Liouville numbers...
 
If the twisting parameter is a 
certain kind of Liouville number, 
then there is not a sharp distinction between the twisted and untwisted sectors, and one effectively recovers the volume divergence in the transverse dimensions. 



1-generator models

This talk: Γ = gZZ
0 where g0 = Λ(~v, ~R) acts by:

x+ → x+

~x→ ~x+ ~vx+ + ~R

x− → x− + ~v · ~x+ 1
2
~v2x+

~x,~v, ~R ∈ IRd, d ≤ 8.

By conjugation in P(1, d+ 1) we can take
� ~v = vx̂1

� ~R = Rx̂2.

We can set v = 1, but the parameter R is a modulus.

(Remark: The Λ(~v, ~R), ~v, ~R ∈ IR8, generate an Heisenberg
group, present in all pp wave backgrounds.)

Greg Moore

trivial remark
This assumes v is nonzero. 
If v=0, the orbifold is not 
time-dependent.


In tomorrow's talk, Seiberg 
will take v = 2\pi . 


I wrote the transformation as 
above to emphasize that our 
considerations easily generalize to other orbifold groups.
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Geometry of the 1-generator models

What does IR1,3/Γ look like?

X :=


x+

x1

x2

x−

 → gn0 ·X =


x+

x1 + (nv)x
+

x2 + nR
x− + (nv)x1 +

1
2 (nv)

2x+



Compute distance to the image point:

(X − g0 ·X)2 = (vx+)2 +R2

x+

� This geometry was called the �null-brane� by Figueroa-
O�Farrill & Simón (it can be interpreted as a generalized fluxbrane )



The parabolic orbifold: R = 0

The R→ 0 limit of the null brane deÞnes the parabolic orb-
ifold: (Horowitz and Steif, 1990, Tseytlin & Klimcek, 1994)

X :=

 x+

x1

x−

 → gn0 ·X =

 x+

x1 + (nv)x
+

x− + (nv)x1 +
1
2 (nv)

2x+



x+

(X − g0 ·X)2 = (vx+)2

This is an accurate picture away from x+ = 0.

However, (IR1,2/Γ) × IR7 is in fact a non-Hausdorff space
near x+ = 0.

Nevertheless, the string orbifold procedure constructs string
theory on the group quotient, and not on the double-cone.
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Wave Equation on the Orbifolds

First quantized wave equation on the orbifold:

¡ ¢
−2 ∂
+

∂
− + (

∂
)2 Ψ = m2Ψ
∂x ∂x ∂~x

Solutions become untwisted vertex operators in the quantized
string.

Project onto states invariant under U(g0)

Ψ ∈ Horbifold ⇔ U(g0) ·Ψ = Ψ

Write solutions of the wave equation in a basis of plane waves

φp+,p(x
+, ~x, x−) = exp

¡−ip+x− − ip−x+ + i~p · ~x¢
The states are on-shell for

p− =
~p2 +m2

2p+
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Invariant Wavefunctions

General solution of the wave equation (for Þxed p+):

Uχ(X) :=

Z
IRd

d~p χ(~p) ei(P,X)

X = (x+, ~x, x−) with ~x ∈ IRd

P =
¡
p+, ~p, p− =

~p2 +m2

2p+

¢
,

Uχ are invariant under g = Λ(~v, ~R) iff

χ(~p+ ~vp+) = e−i(~p+p+~v)·~Rχ(~p)

i.e., the wavefunction must be quasiperiodic in transverse
momentum space.
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The parabolic orbifold and null brane

χ(~p+ ~vp+) = e−i(~p+p+~v)·~Rχ(~p)

Specialize to the parabolic orbifold (d = 1):

χ(p+ vp+) = χ(p)

⇒ χ is periodic in p ⇒ use Fourier series ⇒ basis:

χn(p) = e
−ipξn ξn :=

2π

vp+
n n ∈ ZZ

(These will be the “J-eigenstates” in talk II)

Specialize to the null brane (d = 2):

χ
¡
p1 + vp

+, p2

¢
= e−iRp2χ

¡
p1, p2

¢
⇒ χ is quasi-periodic in p1 ⇒ basis of wavefunctions:

χn(p1, p2) = e
−i R

p+v
p1p2e−ip1ξn �χ(p2)

With �χ(p2) arbitrary.
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Two s ources of trouble

� Uχ(X) can be singular

� χ(~p) can have �too much� support at large energy:
p− = (~p2 +m2 )/(2p+ )

Talk II will show how these can lead to pathologies in string
perturbation theory, and inÞnities even at string tree level.

AmpliÞcation of item 1:

Uχ
¡
X
¢|x + =0 = e

−ip 
+ x−

Z
IR d
d~p χ(~p) ei~p·~x

� Parabolic orbifold (d = 1):

χn(p) = e
−ipξn ⇒ Uχ = e

−ip+ x−δ(ξn − x)

� Null brane (d = 2): (put p+ v/R = 1 )

χn(p1 , p2 ) = e
−ip 1 p  2 e−ip 1 ξn �χ(p2 ) ⇒

Uχ ∼ e−ip 
+ x−eix 1 x2 �χ(x1 − ξn)

Conclusion: Wavefunctions are smooth on the null brane
and singular on the parabolic orbifold.
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Generalization


For general discrete subgroups 
\Gamma  of the Heisenberg 
group the condition of nonsingularity of the wavefunctions turns out to be 
equivalent to the absence of 
``nearly closed null curves.'' 
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High Energy Support

AmpliÞcation of item 2:

Momentum space wavefunction χ(~p) is quasiperiodic.

Since p− = (~p2 +m 
2 )/2p+ the vertex operators involve states

of arbitrarily large energy. Gravitons couple to the energy
⇒potential trouble ...

� Parabolic orbifold (d = 1):

χ(p+ vp+) = χ(p)

⇒ O(1) support at arbitrarily high energy.

� Null brane (d = 2):

χ(p1, p2) = e
−i R

p+v
p1p2ψ(p1)�χ(p2)

with ψ(p1 + vp
+) = ψ(p1).

⇒ can take �χ  (p2 ) of rapid decrease ⇒ sufficient suppres-
sion of the high energy component that one can deÞne Þnite
amplitudes.

Important subtlety
This is actually rather subtle, 
since the support at p_2=0 
extends to infinity. It turns out 
that the Gaussian phase 
factor plays a key role in 
rendering the amplitudes 
finite.
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Quantization of Twisted Sectors

Main results:

� Interesting exchange algebra in the twisted sectors

� There are physical states in the twisted sectors

Return to the covariant action

S =
1

4πα0

Z ∞

−∞
dτ

Z 2π

0

dσ ηµν (∂τx
µ∂τx

ν − ∂σxµ∂σxν)

Twisted sector conditions in sector w ∈ ZZ:

X(σ + 2π, τ) = e 
2πwJX(σ, τ)

J =

 0 0 0
1 0 0
0 1 0


x 

+ (σ + 2π, τ) = x+ (σ, τ )

x(σ + 2π, τ) = x(σ, τ) + 2πwx+ (σ, τ)

x−(σ + 2π, τ) = x−(σ, τ) + 2πwx(σ, τ ) +
1

2
(2πw) 2 x+ (σ, τ)

Equation of motion:¡−∂2
τ + ∂

2
σ

¢
Xµ = 0




Very similar considerations 
apply to the null brane. 



Covariant oscillators

Solve the equations of motion in the twisted sector in terms
of oscillators:

�xµL := i
X
n 6=0

αµn
n
e−inu

+

�xµR := i
X
n 6=0

�αµn
n
einu

−

General solution in the twisted sector:

X(σ, τ ) = exp(wσJ )Xz(τ)+

+ exp(wu+J ) �XL(u+) + exp(wu−J ) �XR(u−)

Zeromodes are given by

Xz(τ ) :=

 x+
0 + α

0p+τ
x0 + α

0pτ
x−0 + α

0p−τ + w2
¡
α0p+ τ3

6 + x
+
0
τ2

2

¢


Symplectic form is standard

Ω =
1

2πα0

Z
dσ δxµηµν∂τδx

ν
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Noncommuting coordinates?

Surprise in terms of oscillators:

[αµn,α
ν
m] = nδn+m,0

∙
1

η + iwn ηJ
¸µν

[�αµn, �α
ν
m] = nδn+m,0

∙
1

η − iwn ηJ
¸µν

⇒ Unusual exchange algebra in the w-twisted sector

∂Xµ1(z1)∂X
µ2(z2) = ∂X

µ2(z2)∂X
µ1(z1)

+ i
w

z1z2

Ã
e−iw log z1JJ eiw log z2J η−1

!µ1µ2

(|z1| > |z2|)

This nontrivial exchange algebra is very similar to the ex-
change algebras of chiral vertex operators of RCFT.

The exchange algebra is also suggestive of non-commuting
coordinates and hence of non-commutative geometry.

This might be related to remarks of Nekrasov re quantum
groups.

more generally,...
Indeed, such exchange 
algebras appear in arbitrary 
rotational orbifolds -- the 
above formula is essentially 
already in Dixon, Friedan, 
Martinec, and Shenker. 

Yes, but...

Note that such nontrivial 
exchange  algebras also 
appear in WZW models, which 
are perfectly smooth and 
Hausdorff. 
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Physical twisted states

There are sensible solutions of

(L0 − 1)|0; p+i = (�L0 − 1)|0; p+i = 0

DDF Operators:

An =

I
dz

2π

∙
∂zx+ iw log z∂zx

+ +
w

znk0

¸
eink0x

+

(z),

n = ±1,±2 · · ·

⇒ usual tower of oscillator states, in the twisted sector.

� This is conÞrmed by analysis of one-loop partition func-
tions.

� Compare hyperbolic orbifold, which has no physical states
in the twisted sector (Nekrasov).

⇒ Open problem: Do these twisted states lead to important
physical effects?

details, details ...

Of course, we also impose 
L_n =0  for n>0. 

The wavefunctions have the 
curious property that they 
behave like exp[i (x^+)^3] 

gosh...

This is an extremely surprising 
result!



Related Models

� Other subgroups
Γ ⊂ G := ¡Spin(7) × IR8

¢ × IR1,9

� (Time-dependent) orbifolds of pp waves

� Melvin models, ßuxbranes, generalized ßuxbranes, ...
� BTZ black holes:

M = J = 0 BTZ = gSL(2, IR)/gZZ
0

parabolic orbifold = sl(2, IR)/gZZ
0

Physically: Take a scaling region at the horizon.
r=0

r=

r=0

In general, gauging WZW models by noncompact
gauge groups might not lead to string backgrounds well-
deÞned in string perturbation theory.

Conjecture/Worry
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Conclusions & Future Directions

We have described a class of models with

� Weak coupling,

� Supersymmetry,

� All orders of α0 under control,

Yet, amazingly (to me), not all is well.

⇒String perturbation theory in time-dependent orbifolds is
not necessarily well-deÞned.

One of our positive results is that �good orbifolds� seem to
exist: for example, the null brane R > 0.

Open problem: Formulate general consistency conditions for
�good orbifolds�

Another result is a new phenomenon of ``UV enhanced IR divergences.'' 

Further explanations in talk II tomorrow. 
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