Strings in Time-Dependent Orbifolds: Kinematics

Cambridge, July 15, 2002

$based\ on$ Hong Liu, Gregory Moore, Nathan Seiberg

hep-th/0204168

hep-th/0206182

- 1. Introduction & Motivation
- 2. Geometry of some time-dependent orbifolds
- 3. Wave equations on the orbifold
- 4. Twisted sectors
- 5. Conclusions & Preview of Talk II

Related works:

Fabinger & McGreevy, hep-th/0206196

Horowitz & Polchinski, hep-th/0206228

Introduction & Motivation - I

The nature of time in general relativity leads to many deep – and well-known – conceptual questions.

Since string theory is a theory of quantum gravity one might hope to address some of these difficult problems in string theory, in the context of exactly solvable models.

But, in interestingly time-dependent backgrounds one encounters a host of new problems...

Among the many problems, today we focus on the crucial issue of backreaction.

Today I mostly discuss kinematics of certain orbifolds. Talk II, given by N. Seiberg, will discuss the dynamical issues further.

Introduction & Motivation - II

Two well-known sources of important backreaction effects:

No susy \Rightarrow potential tachyons and IR instabilities

CCC's \Rightarrow Potential divergences in loop amplitudes and $\langle T_{\mu\nu} \rangle$ \triangle

In this talk we describe a simple model of strings in timedependent geometry in which the above two effects are under control and yet, string perturbation theory is not welldefined.

Infinite blueshifts \Rightarrow divergent couplings to gravitons \Rightarrow string perturbation theory is out of control.

We also find some models, e.g. the "null-brane" do give examples of time-dependent geometries in string theory which can be studied in string perturbation theory \Rightarrow opportunity for further progress.

Time dependent orbifolds

Since time-dependent backgrounds are difficult to work we will study orbifolds:

$${\rm I\!R}^{1,9}/\Gamma, \qquad \Gamma \subset {\rm Poincare}(1,9)$$

This class of models was discussed about 12 years ago by Horowitz and Steif.

Recently there has been a resurgence of interest and papers on the subject

Simple example: $\mathbb{R}^{1,1}/g_0^{\mathbb{Z}}$:

$$ds^2 = -2dx^+ dx^- + \cdots$$

 g_0^n acts by

$$x^+ o e^{n\beta} x^+$$

$$x^- \to e^{-n\beta}x^-$$

Requirements on the background

Spacetime =
$$\mathbb{R}^{1,9}/\Gamma$$
 $\Gamma \subset \mathcal{P}(1,9)$

What should we choose for Γ ?

- Time-dependent
- ∃ some unbroken SUSY
- No CTC's

Immediate implications:

Unbroken susy \Rightarrow null Killing vector \Rightarrow

- Can use lightcone gauge: ▲
- First order time evolution \Rightarrow No particle production
- A subclass of the pp wave backgrounds
- \bullet Results of Figueroa-O'Farrill \Rightarrow

$$\Gamma \subset G := \left(\operatorname{Spin}(7) \ltimes \mathbb{R}^8 \right) \ltimes \mathbb{R}^{1,9}$$

Some sources of pathology in time-dependent orbifolds

Consistency conditions for orbifolds by finite subgroups of Euclidean isometries are well known (anomaly cancellation).

We have found several surprises with orbifolds by $\Gamma \subset \mathcal{P}(1,9)$ for Γ noncompact:

- Fixed points can lead to pathology
- Closed causal curves can lead to pathology
- "Nearly closed null curves"

 $(\exists \text{ closed spacelike geodesics } \gamma_n \text{ with } \lim_{n \to \infty} L(\gamma_n) \to 0 \)$

• Explosive twisted sector degeneracies:

$$\sum_{ ext{twisted sectors}} ext{Tr}_{\mathcal{H}} q^{L_0} ar{q}^{ar{L}_0} = \infty$$

(Some Melvin models are ill-defined.)

• Infinite blueshifts.

We will be focusing on the last problem, which is an important and probably generic effect.

1-generator models

This talk: $\Gamma = g_0^{\mathbb{Z}}$ where $g_0 = \Lambda(\vec{v}, \vec{R})$ acts by:

$$x^{+} \rightarrow x^{+}$$

$$\vec{x} \rightarrow \vec{x} + \vec{v}x^{+} + \vec{R}$$

$$x^{-} \rightarrow x^{-} + \vec{v} \cdot \vec{x} + \frac{1}{2}\vec{v}^{2}x^{+}$$

 $\vec{x}, \vec{v}, \vec{R} \in \mathbb{R}^d, d \leq 8.$

By conjugation in $\mathcal{P}(1, d+1)$ we can take

- $\vec{v} = v\hat{x}_1$
- $\bullet \ \vec{R} = R\hat{x}_2.$

We can set v = 1, but the parameter R is a modulus.

(Remark: The $\Lambda(\vec{v}, \vec{R})$, $\vec{v}, \vec{R} \in \mathbb{R}^8$, generate an Heisenberg group, present in all pp wave backgrounds.) \triangle

Geometry of the 1-generator models

What does $\mathbb{R}^{1,3}/\Gamma$ look like?

$$X := \begin{pmatrix} x^+ \\ x_1 \\ x_2 \\ x^- \end{pmatrix} \rightarrow g_0^n \cdot X = \begin{pmatrix} x^+ \\ x_1 + (nv)x^+ \\ x_2 + nR \\ x^- + (nv)x_1 + \frac{1}{2}(nv)^2 x^+ \end{pmatrix}$$

Compute distance to the image point:

$$(X - g_0 \cdot X)^2 = (vx^+)^2 + R^2$$

• This geometry was called the "null-brane" by Figueroa-O'Farrill & Simón (it can be interpreted as a generalized fluxbrane)

The parabolic orbifold: R = 0

The $R \to 0$ limit of the null brane defines the *parabolic orb-ifold*: (Horowitz and Steif, 1990, Tseytlin & Klimcek, 1994)

$$X := \begin{pmatrix} x^+ \\ x_1 \\ x^- \end{pmatrix} \rightarrow g_0^n \cdot X = \begin{pmatrix} x^+ \\ x_1 + (nv)x^+ \\ x^- + (nv)x_1 + \frac{1}{2}(nv)^2 x^+ \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

This is an accurate picture away from $x^+ = 0$.

However, $(\mathbb{R}^{1,2}/\Gamma) \times \mathbb{R}^7$ is in fact a non-Hausdorff space near $x^+ = 0$.

Nevertheless, the string orbifold procedure constructs string theory on the group quotient, and not on the double-cone.

Wave Equation on the Orbifolds

First quantized wave equation on the orbifold:

$$\left(-2\frac{\partial}{\partial x^{+}}\frac{\partial}{\partial x^{-}} + \left(\frac{\partial}{\partial \vec{x}}\right)^{2}\right)\Psi = m^{2}\Psi$$

Solutions become untwisted vertex operators in the quantized string.

Project onto states invariant under $\mathcal{U}(g_0)$

$$\Psi \in \mathcal{H}^{\text{orbifold}} \qquad \Leftrightarrow \qquad \mathcal{U}(g_0) \cdot \Psi = \Psi$$

Write solutions of the wave equation in a basis of plane waves

$$\phi_{p^+,p}(x^+, \vec{x}, x^-) = \exp(-ip^+x^- - ip^-x^+ + i\vec{p}\cdot\vec{x})$$

The states are on-shell for

$$p^{-} = \frac{\vec{p}^2 + m^2}{2p^+}$$

Invariant Wavefunctions

General solution of the wave equation (for fixed p^+):

$$\begin{split} U_\chi(X) := \int_{\mathbb{R}^d} d\vec{p} \; \chi(\vec{p}) \; e^{i(P,X)} \\ X &= (x^+, \vec{x}, x^-) \qquad \text{with} \qquad \vec{x} \in \mathbb{R}^d \\ P &= \left(p^+, \vec{p}, p^- = \frac{\vec{p}^2 + m^2}{2p^+}\right), \end{split}$$

 U_{χ} are invariant under $g = \Lambda(\vec{v}, \vec{R})$ iff

$$\chi(\vec{p} + \vec{v}p^+) = e^{-i(\vec{p} + p^+ \vec{v}) \cdot \vec{R}} \chi(\vec{p})$$

i.e., the wavefunction must be *quasiperiodic* in transverse momentum space.

The parabolic orbifold and null brane

$$\chi(\vec{p} + \vec{v}p^+) = e^{-i(\vec{p}+p^+\vec{v})\cdot\vec{R}}\chi(\vec{p})$$

Specialize to the parabolic orbifold (d = 1):

$$\chi(p + vp^+) = \chi(p)$$

 $\Rightarrow \chi$ is periodic in $p \Rightarrow$ use Fourier series \Rightarrow basis:

$$\chi_n(p) = e^{-ip\xi_{\mathsf{ln}}} \qquad \xi_n := \frac{2\pi}{vp^+}n \qquad n \in \mathbb{Z}$$

(These will be the "J-eigenstates" in talk II)

Specialize to the null brane (d = 2):

$$\chi(p_1 + vp^+, p_2) = e^{-iRp_2}\chi(p_1, p_2)$$

 $\Rightarrow \chi$ is quasi-periodic in $p_1 \Rightarrow$ basis of wavefunctions:

$$\chi_n(p_1, p_2) = e^{-i\frac{R}{p^+ \vee} p_1 p_2} e^{-ip_1 \xi_n} \tilde{\chi}(p_2)$$

With $\tilde{\chi}(p_2)$ arbitrary.

Two sources of trouble

- $U_{\chi}(X)$ can be singular
- $\chi(\vec{p})$ can have "too much" support at large energy:

$$p^- = (\vec{p}^2 + m^2)/(2p^+)$$

Talk II will show how these can lead to pathologies in string perturbation theory, and infinities even at string tree level.

Amplification of item 1:

$$U_{\chi}(X)|_{x^{+}=0} = e^{-ip^{+}x^{-}} \int_{\mathbb{R}^{d}} d\vec{p} \; \chi(\vec{p}) \; e^{i\vec{p}\cdot\vec{x}}$$

• Parabolic orbifold (d = 1):

$$\chi_n(p) = e^{-ip\xi_{\cap}} \quad \Rightarrow \quad U_{\chi} = e^{-ip^+x^-}\delta(\xi_n - x)$$

• Null brane (d=2): (put $p^+v/R=1$)

$$\chi_n(p_1, p_2) = e^{-ip_1p_2} e^{-ip_1\xi_n} \tilde{\chi}(p_2) \implies$$

$$U_{\chi} \sim e^{-ip^+x^-} e^{ix_1x_2} \tilde{\chi}(x_1 - \xi_n)$$

on election: We define the second on the second of the se

Conclusion: Wavefunctions are smooth on the null brane and singular on the parabolic orbifold.

High Energy Support

Amplification of item 2:

Momentum space wavefunction $\chi(\vec{p})$ is quasiperiodic.

Since $p^- = (\vec{p}^2 + m^2)/2p^+$ the vertex operators involve states of arbitrarily large energy. Gravitons couple to the energy \Rightarrow potential trouble ...

• Parabolic orbifold (d = 1):

$$\chi(p + vp^+) = \chi(p)$$

- $\Rightarrow \mathcal{O}(1)$ support at arbitrarily high energy.
- Null brane (d=2):

$$\chi(p_1, p_2) = e^{-i\frac{R}{p^+ v}p_1p_2}\psi(p_1)\tilde{\chi}(p_2)$$

with $\psi(p_1 + vp^+) = \psi(p_1)$.

 \Rightarrow can take $\tilde{\chi}(p_2)$ of rapid decrease \Rightarrow sufficient suppression of the high energy component that one can define finite amplitudes.

Quantization of Twisted Sectors

Main results:

- Interesting exchange algebra in the twisted sectors
- There are physical states in the twisted sectors

Return to the covariant action

$$S = \frac{1}{4\pi\alpha'} \int_{-\infty}^{\infty} d\tau \int_{0}^{2\pi} d\sigma \, \eta_{\mu\nu} \left(\partial_{\tau} x^{\mu} \partial_{\tau} x^{\nu} - \partial_{\sigma} x^{\mu} \partial_{\sigma} x^{\nu} \right)$$

Twisted sector conditions in sector $w \in \mathbb{Z}$:

$$X(\sigma + 2\pi, \tau) = e^{2\pi w \mathcal{J}} X(\sigma, \tau)$$
 $\mathcal{J} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$x^{+}(\sigma + 2\pi, \tau) = x^{+}(\sigma, \tau)$$

$$x(\sigma + 2\pi, \tau) = x(\sigma, \tau) + 2\pi w x^{+}(\sigma, \tau)$$

$$x^{-}(\sigma + 2\pi, \tau) = x^{-}(\sigma, \tau) + 2\pi w x(\sigma, \tau) + \frac{1}{2}(2\pi w)^{2} x^{+}(\sigma, \tau)$$

Equation of motion:

$$(-\partial_{\tau}^2 + \partial_{\sigma}^2)X^{\mu} = 0$$

Covariant oscillators

Solve the equations of motion in the twisted sector in terms of oscillators:

$$\hat{x}_L^{\mu} := i \sum_{n \neq 0} \frac{\alpha_n^{\mu}}{n} e^{-inu^+}$$

$$\hat{\alpha}_L^{\mu} := i \sum_{n \neq 0} \frac{\tilde{\alpha}_n^{\mu}}{n} e^{-inu^-}$$

$$\hat{x}^{\mu}_{R} := i \sum_{n \neq 0} \frac{\tilde{\alpha}^{\mu}_{n}}{n} e^{inu^{-}}$$

General solution in the twisted sector:

$$X(\sigma,\tau) = \exp(w\sigma\mathcal{J})X_z(\tau) +$$

$$+ \exp(wu^+\mathcal{J})\hat{X}_L(u^+) + \exp(wu^-\mathcal{J})\hat{X}_R(u^-)$$

Zeromodes are given by

$$X_{z}(\tau) := \begin{pmatrix} x_{0}^{+} + \alpha' p^{+} \tau \\ x_{0} + \alpha' p \tau \\ x_{0}^{-} + \alpha' p^{-} \tau + w^{2} \left(\alpha' p^{+} \frac{\tau^{3}}{6} + x_{0}^{+} \frac{\tau^{2}}{2} \right) \end{pmatrix}$$

Symplectic form is standard

$$\Omega = \frac{1}{2\pi\alpha'} \int d\sigma \, \delta x^{\mu} \eta_{\mu\nu} \partial_{\tau} \delta x^{\nu}$$

Noncommuting coordinates?

Surprise in terms of oscillators:

$$\left[\alpha_n^{\mu}, \alpha_m^{\nu}\right] = n\delta_{n+m,0} \left[\frac{1}{\eta + i\frac{w}{n}\eta\mathcal{J}}\right]^{\mu\nu}$$

$$\left[\tilde{\alpha}_{n}^{\mu}, \tilde{\alpha}_{m}^{\nu}\right] = n\delta_{n+m,0} \left[\frac{1}{\eta - i\frac{w}{n}\eta\mathcal{J}}\right]^{\mu\nu}$$

 \Rightarrow Unusual exchange algebra in the w-twisted sector

$$\partial X^{\mu_{1}}(z_{1})\partial X^{\mu_{2}}(z_{2}) = \partial X^{\mu_{2}}(z_{2})\partial X^{\mu_{1}}(z_{1})$$

$$+ i \frac{w}{z_{1}z_{2}} \left(e^{-iw \log z_{1} \mathcal{J}} \mathcal{J} e^{iw \log z_{2} \mathcal{J}} \eta^{-1} \right)^{\mu_{1}\mu_{2}}$$

$$(|z_1| > |z_2|)$$

This nontrivial exchange algebra is very similar to the exchange algebras of chiral vertex operators of RCFT. \triangle

The exchange algebra is also suggestive of non-commuting coordinates and hence of non-commutative geometry. \triangle

This might be related to remarks of Nekrasov re quantum groups.

Physical twisted states

There are sensible solutions of \triangle

$$(L_0-1)|0;p^+\rangle = (\tilde{L}_0-1)|0;p^+\rangle = 0$$

DDF Operators:

$$A_n = \oint \frac{dz}{2\pi} \left[\partial_z x + iw \log z \partial_z x^+ + \frac{w}{znk_0} \right] e^{ink_0 x^+}(z),$$

$$n=\pm 1,\pm 2\cdots$$

- \Rightarrow usual tower of oscillator states, in the twisted sector.
- This is confirmed by analysis of one-loop partition functions.
- Compare hyperbolic orbifold, which has *no* physical states in the twisted sector (Nekrasov).
- ⇒ Open problem: Do these twisted states lead to important physical effects?

Related Models

• Other subgroups

$$\Gamma \subset G := (\operatorname{Spin}(7) \ltimes \mathbb{R}^8) \ltimes \mathbb{R}^{1,9}$$

- (Time-dependent) orbifolds of pp waves
- Melvin models, fluxbranes, generalized fluxbranes, ...
- BTZ black holes:

$$M = J = 0 \text{ BTZ} = \widetilde{SL(2, \mathbb{R})}/g_0^{\mathbb{Z}}$$

parabolic orbifold = $sl(2, \mathbb{R})/g_0^{\mathbb{Z}}$

Physically: Take a scaling region at the horizon.

Conjecture/Worry

In general, gauging WZW models by noncompact gauge groups might not lead to string backgrounds well-defined in string perturbation theory.

Conclusions & Future Directions

We have described a class of models with

- Weak coupling,
- Supersymmetry,
- All orders of α' under control,

Yet, amazingly (to me), not all is well.

⇒String perturbation theory in time-dependent orbifolds is not necessarily well-defined.

One of our positive results is that "good orbifolds" seem to exist: for example, the null brane R > 0.

Open problem: Formulate general consistency conditions for "good orbifolds"

Another result is a new phenomenon of "UV enhanced IR divergences."

Further explanations in talk II tomorrow.