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i)Motivation.



• QCD remains a challenge after 34 years!

The QCD challenge



• A string reformulation might help.

• Lots of gauge/gravity examples.

• QCD remains a challenge after 34 years!

The QCD challenge

• Unfortunately, QCD dual is not accessible 
via supergravity.



Therefore:

• How about QCD just above deconfinement? 

• Certain quantitative observables (eg. T=0 spectrum) 
will require going beyond supergravity.

• However, certain predictions may be universal 
enough to apply in certain regimes. 

• Good example:  η/s = 1/4π Gubser, Klebanov & Peet ‘96
Policastro, Son & Starinets ‘01

Same for all non-Abelian plasmas with gravity dual! 



Animation by Jeffery Mitchell (Brookhaven National 
Laboratory). Simulation by the UrQMD Collaboration

 Results from RHIC indicate η/s ~ 1/4π.



Observations:

Gravity dual of a deconfined 
plasma contains a black hole

• Based on universal property:

BH

• Did not know           was going to be universal!

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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Observations:

Nf <<Nc quark flavours correspond 
to Nf probe branes 

• Combine with another one:

Karch & Katz ‘02

Glueballs

For concreteness will concentrate 
on D7 probes in D3 background.

BH

Mesons

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of
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Disclaimer:

Not QCD, so interpret with caution.



ii) Fundamental phase transitions.
D.M., Myers & Thomson ‘06

Previous related work: 

Babington, Erdmenger, Guralnik & Kirsch ’03
Kruczenski, D.M., Myers & Winters ‘03
Kirsch ‘04



Mq

T

• No quasi-particle excitations!

•  Discrete set of mesons with mass gap:

Universality and Scaling in AdS/CFT with Flavour
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•  Free massive quarks.

•  Absolutely stable -- survive deconfinement!
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•In good agreement with lattice QCD, eg. for J/Ψ:

Lattice:
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iii) Viscosity of fundamental matter.
D.M., Myers & Thomson ‘06



Universal viscosity bound

Universality and Scaling in AdS/CFT with Flavour
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• Conjectured universal bound for relativistic plasmas:

Kovtun, Son & Starinets ‘03

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).

Nc → ∞ , λ → ∞ (1)

Tdec = 175 MeV (2)

k0 = 1 GeV (3)

Mmes (4)

0Mev (5)

Mπ(140 MeV) (6)

Mφ(1020 MeV) (7)

MJ/ψ(3096 MeV) (8)

(9)

ω ∼
k0

T
or m ∼

Mmes

T
(10)

m ∼
Mmes

T
∼

Mq√
λT

(11)

χ =
∑

delta functions (12)

Mmes ∼
Mq√

λ
∼ Tfun (13)

m = 0 m = 1.3 (14)

1

• Saturated at                              by all holographic theories 
with adjoint matter.

• Results from RHIC are close: 
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• What about when quarks are included? 
QCD and leading             correction. 
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Holographic calculation

Holographic Viscosity of Fundamental Matter

David Mateos,1 Robert C. Myers,2,3,4 and Rowan M. Thomson,3,4

1 Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
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3 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
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A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavours
Nf ! Nc typically contains D-branes in a black hole background. By considering the backreaction
of the branes, we demonstrate that, to leading order in Nf/Nc, the viscosity to entropy ratio in these
theories saturates the conjectured universal bound η/s ≥ 1/4π. Given the known results for the
entropy density, the contribution of the fundamental matter ηfund is therefore enhanced at strong
’t Hooft coupling λ; for example, ηfund ∼ λNcNfT

3 in four dimensions. Other transport coefficients
are analogously enhanced. These results hold with or without a baryon number chemical potential.

PACS numbers:

Introduction: Recently a proposal was made for a uni-
versal bound η/s ≥ 1/4π on the ratio of the shear viscos-
ity to the entropy density of all relativistic quantum field
theories [1]. Experimental results from the Relativistic
Heavy Ion Collider (RHIC) suggest that, for QCD just
above the deconfinement phase transition, the value of
η/s is close to saturating this bound [2]. Although no
theoretical tools with which to calculate transport co-
efficients in QCD in this regime are available, a large
class of gauge theories are accessible to study with the
gauge/gravity correspondence [3]. In particular, in the
gauge theory limit of large Nc and large ’t Hooft coupling
λ, the dual description reduces to classical supergravity.
Explicit calculations [4, 5] and general arguments [1, 6, 7]
have demonstrated that, in this limit, the bound is ex-
actly saturated by a large class of holographic theories.
To make contact with real-world QCD, it is clearly im-
portant to consider 1/λ and 1/Nc corrections. For four-
dimensional N = 4 super Yang-Mills (SYM), the leading
correction of the first type was shown to raise the value
of η/s above the bound [8].

A feature common to all of the gauge theories con-
sidered in these hydrodynamic studies is that the mat-
ter transforms in the adjoint representation of the gauge
group [9]. In this letter, we study the effect of adding
matter fields in the fundamental representation. In par-
ticular, we focus on four-dimensional SU(Nc) SYM cou-
pled to Nf fundamental hypermultiplets with Nf " Nc.
Large-Nc counting rules imply that, in the deconfined
phase, the contribution of the gluons and adjoint matter
to physical quantities is of order N2

c . Further, the first
correction in the absence of fundamental matter is of or-
der 1, i.e., it is suppressed by 1/N2

c . Instead, the relative
contribution of fundamental matter is only suppressed
by Nf/Nc, and therefore it constitutes the leading correc-
tion. This is particularly important in theories for which
the bound is exactly saturated at Nc = ∞, since in these
cases whether or not the bound is violated at large but
finite Nc is completely determined by the leading 1/Nc

correction.

The dual gravity description is given by Nf D7-brane

probes [11] in the background of Nc D3-branes. At fi-
nite temperature, the latter contains a black hole [12].
Determining modifications of the shear viscosity requires
that we go beyond the usual probe approximation and
begin to account for the backreaction of the D7-branes.
However, we will show that, to leading order in Nf/Nc,
the calculation of the η/s ratio can be effectively reduced
to one in five-dimensional Einstein gravity coupled to a
scalar field. General results [1, 6] then guarantee that
η/s = 1/4π. Since the D7-brane contribution to the en-
tropy density is of order sfund ∼ λNcNfT 3 [13], this im-
plies that the contribution of the fundamental matter to
the shear viscosity at strong coupling is enhanced with
respect to that dictated solely by large-Nc counting rules.
Holographic Framework: The shear viscosity of the
gauge theory in a two-plane labelled by xi, xj may be
computed via Kubo’s formula:

η = lim
ω→0

1

2ω

∫

dt d3x eiωt 〈[Tij(x), Tij(0)]〉 , (1)

where no summation over i, j is implied. The stress-
energy tensor above is dual on the string side to a met-
ric perturbation Hij polarised along the same two-plane.
The retarded correlator can be calculated by taking two
functional derivatives of the on-shell string effective ac-
tion with respect to this perturbation [15]. In the large-
Nc, large-λ limit, this effective action reduces to the type
IIB supergravity action coupled to the worldvolume ac-
tion of the D7-branes, I = IIIB + ID7. Schematically, we
have:

I =
1

16πG

∫

d10x
√
−gR − NfTD7

∫

d8x
√
−gind + · · · ,

(2)
where gind is the induced metric on the D7-branes. The
ratio between the normalisations of the two terms above
is ε = 16πGNfTD7 = λNf/2πNc, where λ = g2

YMNc is the
’t Hooft coupling. This ratio controls the relative mag-
nitude of the D7-branes’ contribution to physical quan-
tities, e.g., the entropy density [13]. We will assume
that ε " 1, so that the D7-branes can be treated as

Couples to 
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• Kubo:

3

ε2
∫

d5y H0 H(!)
1 g(!)

1 . Similarly, the D7-branes action pro-

duces couplings like ε2
∫

d5y H0 H(!)
1 for modes that are

constant on the S3 wrapped by the D7-branes. However,
as indicated, both types of terms are of order ε2 and so
we may neglect their contribution here.

We therefore conclude that, to order ε, we need only

consider the zero-modes g(0)
1 (y) and H(0)

1 (y). Hence in
working to order ε, the evaluation of the viscosity actu-
ally reduces to a five-dimensional calculation. We can
make the latter concrete by dimensionally reducing the
action IIIB+ID7 to five dimensions ignoring all the Kaluza-
Klein modes on the five-sphere, as well as the other super-
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We have only allowed scalar field configurations depend-
ing on the radial coordinate, since this suffices for our
purposes. This system is just five-dimensional Einstein
gravity coupled to a cosmological constant and a(n un-
usual) scalar field χ. In an ε-expansion, the black hole so-
lutions generated by this auxiliary theory will match the
asymptotically AdS part of the original ten-dimensional
solution to order ε, i.e., the brane profile χ(ρ) and the

background metric (4) plus the O(ε) correction g(0)
1 (ρ).

The viscosity may now be obtained by calculating the
perturbation Hij around the five-dimensional solution
and taking the second functional derivative of the ac-
tion (9) evaluated on-shell. However, the black brane
solutions of our auxiliary five-dimensional system satisfy
the symmetries required in [1], namely translational and
rotational invariance in the xi-directions, and hence the
result is guaranteed to satisfy η/s = 1/4π. We thus con-
clude that this universal bound is still saturated in the
full ten-dimensional string theory when working to first
order in ε. With the known results for sfund [13], we have
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where h(x) satisfies h(0) = 0, h(∞) = 1, and makes a
cross-over between both values around x ∼ 1. Therefore
the leading correction is enhanced by a factor of λ at
strong ’t Hooft coupling with respect to the O(Nc/Nf)-
value dictated solely by large-Nc counting rules.

The calculation of sfund in [13] was performed by identi-
fying the Euclidean action of the D7-branes with Ffund/T ,
where Ffund is the free energy contribution of the fun-
damental matter. The entropy is then determined as
sfund = −∂Ffund/∂T . This entropy should coincide with
the change in the horizon area induced by the presence
of the D7-branes. The latter can be explicitly verified
for the case of massless quarks, which corresponds to
χ = 0. In this case, the result for the entropy den-
sity is sfund = λNcNf T 3/16. We see in (9) that the net

effect of these ‘equatorial’ D7-branes is to shift the ef-
fective cosmological constant. The corresponding black
hole solution is still given by (4), with the replacement
L2 → L2/(1− ε/6π). The same replacement in (5) shifts
the entropy to order ε by δs = λNcNf T 3/16, in perfect
agreement with the previous result.
Discussion: We have reduced the calculation of the con-
tribution of fundamental matter to the shear viscosity
to one in five dimensions. An analogous simplification
takes place for other transport coefficients that can be
extracted from correlators involving local operators with
vanishing R-charge, since these are dual to modes that
carry no angular momentum on the S5. Examples in-
volving components of the stress-energy tensor include
the speed of sound vs and the bulk viscosity ζ. Other
transport coefficients that involve R-charged operators,
such as the R-charge diffusion constant [5], or extended
strings, such as the jet quenching parameter q̂ (see e.g.,
[20]), may require a ten-dimensional calculation. Generi-
cally, however, we expect the relative contribution of the
fundamental matter to be of order ε ∼ λNf/Nc, since this
controls the backreaction of the branes.

Above, our discussion focussed on the D3/D7 system,
but the arguments are easily extended to a more general
Dp/Dq system intersecting over d common spatial direc-
tions. This is dual to a finite-temperature SYM theory in
p+1 dimensions coupled to fundamental matter confined
to a (d + 1)-dimensional defect. One new feature is that
the defect breaks translational invariance along the p− d
orthogonal directions. In order to calculate the shear vis-
cosity along the translationally invariant directions paral-
lel to the defect, the simplest approach is to compactify
these extra directions. The arguments in the previous
section go through essentially unchanged except for the
fact that the index * now labels momentum modes both
along the S8−p transverse to the Dp-branes and along
the p−d directions orthogonal to the defect. In this case
the problem of calculating the leading contribution of the
fundamental matter to the viscosity/entropy ratio can be
reduced to a calculation in (d + 2)-dimensional Einstein
gravity coupled to a set of scalar fields. In addition to the
scalar χ above, this set now includes the dilaton and the
metric components governing the size of the internal S8−p

of the background geometry and the size of the (p − d)-
dimensional space orthogonal to the defect This lower di-
mensional theory again captures all of the relevant fields
to calculate the viscosity to leading order in Nf/Nc. Fur-
ther, the form of the (d + 2)-dimensional gravity theory
and the background guarantees that η/s = 1/4π. The
leading result for the entropy density was determined

in [13] and hence we have ηfund ∼ NcNf T d geff(T )
2(d−1)
5−p ,

where g2
eff(T ) = λT p−3 is the dimensionless effective ’t

Hooft coupling for a (p + 1)-dimensional theory at tem-
perature T [21]. Here the gauge/gravity duality is only
valid in the strongly coupled regime [21] and hence we
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The same line of argument can also be implemented for
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Figure 5: Free-energy, entropy and energy densities for a D7-brane in a D3-brane background; note
that N ∝ T 3. The blue dashed (red continuous) curves correspond to the Minkowski (black hole)
embeddings. The dotted vertical line indicates the precise temperature of the phase transition.

eqs. (4.23), (4.26) and (4.28) in this limit. We find
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using ρmin = 1 for black hole embeddings and c̃ " −0.456947 from eq. (A.7). In this high

temperature limit, the quark mass is negligible and so the first term in these expressions

could be characterised as conformal behaviour. The remaining contributions are small

corrections indicating a deviation from this simple behaviour generated by the finite quark
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iv) Holographic photon production.



γ

• QGP is optically thin → Photons carry valuable information.

Caron-Huot, Kovtun, Moore, Starinets & Yaffe ’06
Parnachev & Sahakian ‘06

• Holographic results for massless matter:

Why photons?



photon. In this way we obtain an SU(Nc) × U(1)EM gauge theory with Lagrangean

L = LSU(Nc) −
1

4
F2

µν + eAµJEM
µ , (2.1)

where Fµν = ∂µAν − ∂νAµ and the electromagnetic current is given by

JEM
µ = Ψ̄γµΨ +

i

2
Φ∗DµΦ − i

2
(DµΦ)∗ Φ . (2.2)

A sum over flavour and colour indices is implicit in this formula.

In thermal equilibrium, the differential photon emission rate per unit time and volume,

at leading order in the electromagnetic coupling constant e, is then given by [22]
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=
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ηµνχµν(k) , (2.4)

where k = (k0,k), with k0 = |k|, is the photon null momentum,

χµν(k) = −2 Im GR
µν(k) (2.5)

is the spectral density, and

GR
µν(k) = −i

∫

dd+1x e−ik·x Θ(x0)〈[JEM
µ (x), JEM

ν (0)]〉 (2.6)

is the retarded correlator of two electromagnetic currents, whose diagramatic representation

(including the photon field as external legs) is given in fig. 2. Finally,

nB(k0) =
1

ek0/T − 1
(2.7)

is the standard Bose-Einstein distribution function. Without loss of generality we will assume

that k points in the x1-direction, and we will denote by xi, i = 2, . . . , d the remaining spatial

directions. The polarisation vectors εµ
(s) may be chosen to be unit spatial vectors orthogonal
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χµ
µ(k) ≡ ηµνχµν(k) =

d−1
∑

s=1

εµ
(s)(k)εν

(s)(k)χµν(k) , (2.8)
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µ(k) = −2(d − 1) Im GR(k) , (2.9)
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• To leading order in the electromagnetic coupling constant:
where

GR(k) ≡ 1

d − 1
δijGR

ij(k) . (2.10)

The trace of the spectral function also determines the electric conductivity as

σ =
e2

2(d − 1)
lim

k0→0

1

k0
χµ

µ(k0 = |k|) . (2.11)

Thus in order to study photon production we must in principle calculate the two-point

function (2.6) in the SU(Nc)×U(1)EM theory. However, to leading order in the electromagnetic

coupling constant, this reduces to a calculation purely within the original SU(Nc) theory; this

is the key observation that will allow us to perform this calculation using the gravitational

dual description, since the dual of the SU(Nc) × U(1)EM is unknown. To see this, note first

that the terms in the electromagnetic current (2.2) proportional to the photon field (implicit

in the covariant derivative) lead to higher-order contributions in e to the correlator (2.6), and

can thus be ignored to leading order in e. Second, observe that the two-point function of the

remaining terms in the current can be calculated in the SU(Nc) theory, since again the effects

of including the dynamical photon are of higher order in e. Diagramatically, this means that

no photon fields are present in the shaded blobs in fig. 2.4

We therefore conclude that, to leading order in the electromagnetic coupling constant e,

photon production in an SU(Nc)×U(1)EM theory is completely determined by the two-point

function of the electromagnetic current in the SU(Nc) theory. In the rest of the paper we will

calculate this correlator in SU(Nc) SYM theories coupled to fundamental matter.

(a) (b)

Figure 2: Diagrams contributing to the two-point function (2.6) of electromagnetic currents. The
external line corresponds to a photon of momentum k. As explained in the text, to leading order in
the electromagnetic coupling constant only SU(Nc) fields ‘run’ in the loops represented by the shaded
blobs.

4An additional observation is the fact that the tadpole diagram in fig. 2 has no imaginary part and hence

does not contribute to the desired spectral function.
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This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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• Concentrate on BH embeddings: 

Figure 1: The two possible topologies for Dq-brane probes in the background of black Dp-branes.

From the viewpoint of the holographic description, the basic physics behind this transition

is easily understood. The asymptotic distance between the Dq-branes and the black hole is

proportional to the quark mass, whereas the size of the black hole horizon is proportional

to the temperature. Thus for sufficiently small T/Mq the Dq-branes are deformed by the

gravitational attraction of the black hole, but remain entirely outside the horizon in what we

call a ‘Minkowski’ embedding (see fig. 1). However, above a critical temperature Tfun, the

gravitational force overcomes the tension of the branes and these are pulled into the horzion.

We refer to such configurations as ‘black hole’ embeddings.

In the dual field theory, this phase transition is exemplified by discontinuities in physical

quantities such as, for example, the quark condensate or the contribution of the fundamental

matter to the energy density. However, the most striking feature of this phase transition

is found in the spectrum of physical excitations of the fundamental matter. In the low-

temperature, Minkowski phase the spectrum is gapped and contains a discrete set of deeply

bound mesons (i.e., quark-antiquark bound states) with masses of order Mmeson ∼ Mq/
√

λ.

These mesons are dual to excitations supported on the probe branes (see, e.g., [16, 17, 19]) and

are absolutely stable in the large-Nc, strong coupling limit under consideration. In addition to

the mesons, the Minkowski-phase spectrum also contains well defined, quark-like excitations

described by strings stretching between the tip of the branes and the horizon. These have

masses of order Mq and are therefore parametrically heavier than the mesons.

In the high-temperature, black hole phase stable mesons cease to exist. Rather one finds

a continuous and gapless spectrum of excitations [20, 21]. Hence at the first order phase

transition at Tfun the mesons dissociate or ‘ionise’, and the electric charge is thus ‘liberated’.

However, no well defined, quasi-particle notion of an individual quark exists in this phase,

since a string stretching between any point on the branes and the horizon will quickly fall

through the horizon. In the gauge theory this corresponds to the fact that any localised quark

charge will quickly spread across the entire plasma, thus loosing its identity.

In this paper we will study photon production in the black-hole phase. We will see that
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Comments:

But this assumes existence of quasi-particles!

• No obvious comparison of Mq-dependence to pQCD:
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Spectral function for constant
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ω = k0/2πT
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Figure 4: D3/D7 system: Trace of the spectral function as a function of ω for (from top to
bottom on the left-hand side) m = {0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.306}, or equivalently for ψ0 =
{0, 0.37, 0.53, 0.58, 0.75, 0.85, 0.941}. The last value corresponds to that at which the phase transi-
tion from a black hole to a Minkowski embedding takes place. Recall that ÑD7 ∼ NfNcT 2.

Note that the top, solid, red curve in fig. 5, which corresponds to ω = 0, gives (up to

normalisation) the electric conductivity (2.10). Specifically, denoting by h(m) the curve in

question, one has:

σ =
e2

4(2πT )

dχ

dω

∣

∣

∣

∣

ω=0

=
e2

4π
NfNcTh(m) . (4.24)

Again, the difference between our NfNc scaling and the N2
c scaling found in [5] reflects the

difference in the number of electrically charged degrees of freedom.

At intermediate values of ω the spectral function is not a monotonic function of m, as

can be seen in fig. 5. In fig. 4 this is reflected in the fact that curves for different values of m

cross each other around 1 ! ω ! 2. The same behaviour is of course observed in the plot of

the photon production 6.

It is also interesting to examine the spectral function for black hole embeddings beyond

the phase transition, i.e., in the region in which these are metastable or unstable. The results

for the spectral function are shown in fig. 7. The most remarkable feature of these plots is the

appearance of well defined peaks in the spectral function, which become narrower and more

closely spaced, seemingly delta-function-like, as ψ0 → 1. We will discuss the interpretation

of this fact in the last section.
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Figure 7: D3/D7 system: Spectral function for non-stable black hole embeddings. The red curve
with the longest dashes corresponds to ψ0 = 0.9621, the green curve with intermediate dashes to
ψ0 = 0.979, the blue curve with the shortest dashes to ψ0 = 0.999996, and the solid, purple curve to
ψ0 = 0.9999981.

where
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3
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r3
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9
π2T 2L3 . (5.3)

The five-dimensional Yang-Mills coupling constant in the dual gauge theory is dimensionful

and given by g2
YM = 4π2gs#s. It is convenient to introduce the dimensionless coordinate

u = r3/2
0 /2r3/2, in terms of which the metric becomes

ds2 =
(r0

L

)3/2 1

2u

(

−fdx2
0 + dx2

)

+
L3/2r1/2

0

(2u)1/3

(

4du2

9u2f
+ dΩ2

4

)

, (5.4)

with f = 1−4u2. As before, the horizon is at u = 1/2 and the boundary at u → 0.6 Since the

D6-branes wrap a two-sphere in the directions transverse to the D4-branes, it is also useful

to write the metric on the four-sphere as

dΩ2
4 = dθ2 + sin2 θdΩ2

2 + cos2 θdϕ2 , (5.5)

6The D4-brane metric considered in this section is not asymptotically of the form AdS times a sphere. The

framework for the calculation of correlators is less well developed for such backgrounds, so we will proceed

by analogy with the AdS case. Presumably, however, this procedure can be made rigourous by lifting the

D4-brane geometry to M-theory, in which it becomes an M5-brane geometry, which is of the asymptotic form

AdS times a sphere.
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• Calculate photon production rate:

To compare with experiment
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Figure 12: D3/D7 system: Photon emission rate as a function of T for fixed k0 and Mmes. The top
graph corresponds to k0 = 100 MeV, whereas the bottom one corresponds to k0 = 1000 MeV. From
top to bottom, the different curves correspond to Mmes = 0, 140, 1020, 1435, 3096 MeV. Note that the
first two curves (solid red and blue dashed) are virtually coincident.

difference between the curves is greater for k0 = 100 MeV than for k0 = 1000 MeV, and in

the former case it is greater for low temperatures. We have verified that as k0 increases above

1000 MeV, the difference between curves becomes smaller and smaller. The same conclusion
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).

Tdec = 175 MeV (1)

k0 = 100 MeV (2)

Mmes (3)

0Mev (4)

Mπ(140 MeV) (5)

Mφ(1020 MeV) (6)

MJ/ψ(3096 MeV) (7)

(8)

ω ∼
k0

T
or m ∼

Mmes

T
(9)

m ∼
Mmes

T
∼

Mq√
λT

(10)

χ =
∑

delta functions (11)

Mmes ∼
Mq√

λ
∼ Tfun (12)

m = 0 m = 1.3 (13)

m =
2Mq√

λT
(14)
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Figure 12: D3/D7 system: Photon emission rate as a function of T for fixed k0 and Mmes. The top
graph corresponds to k0 = 100 MeV, whereas the bottom one corresponds to k0 = 1000 MeV. From
top to bottom, the different curves correspond to Mmes = 0, 140, 1020, 1435, 3096 MeV. Note that the
first two curves (solid red and blue dashed) are virtually coincident.

difference between the curves is greater for k0 = 100 MeV than for k0 = 1000 MeV, and in

the former case it is greater for low temperatures. We have verified that as k0 increases above

1000 MeV, the difference between curves becomes smaller and smaller. The same conclusion
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• Plug into hydrodynamic simulation of spacetime 
evolution of the plasma.

• Experimentally distinguish different sources:       
QGP photons, prompt photons, decay photons, etc.

To compare with experiment
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v)  Finite baryon density.
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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vi) Future prospects.



BH

• Static   →   Thermodynamics:  S=A/4G.

Towards far from equilibrium

Horizons encode properties of QGPs:

• Small perturbations   →   Near equilibrium,
eg. transport coefficients.

• Large perturbations → Far from equilibrium,
eg. collective instabilities.



Lots to do at finite density

Caveats: Scalar fields (but not always) and large Nc.
Sakai & Sugimoto



Towards holographic condensed matter

Herzog, Kovtun, Sachdev & Son ’07
Hartnoll & Kovtun ’07

Hartnoll, Kovtun, Mueller & Sachdev ‘07



Heavy ion collisions at LHC   
TRHIC ~2Tdec  ,    TLHC ~4Tdec



Thank you.


