RHIC physics and String Theory: The Fundamental Story

Hirosi Ooguri

David Mateos University of California, Santa Barbara

Plan

i) Motivation.
ii) Phase transitions.
iii) Viscosity.
iv) Photon production.
v) Finite density.
vi) Future prospects.

i) Motivation.

The QCD challenge

• QCD remains a challenge after 34 years!

The QCD challenge

- QCD remains a challenge after 34 years!
- A string reformulation might help.
- Lots of gauge/gravity examples.
- Unfortunately, QCD dual is not accessible via supergravity.

Therefore:

• Certain quantitative observables (eg. T=0 spectrum) will require going beyond supergravity.

- However, certain predictions may be universal enough to apply in certain regimes.
- Good example: $\eta/s = 1/4\pi$ Gubser, Klebanov & Peet '96 Policastro, Son & Starinets '01

Same for all non-Abelian plasmas with gravity dual!

• How about QCD just above deconfinement?

Results from RHIC indicate $\eta/s \sim 1/4\pi$.

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Observations:

• Did not know η/s was going to be universal!

Kovtun, Son & Starinets '03

BH

• Based on universal property:

Gravity dual of a deconfined plasma contains a black hole

Observations:

• Combine with another one:

 $N_f << N_c$ quark flavours correspond to N_f probe branes

Karch & Katz '02

For concreteness will concentrate on D7 probes in D3 background.

Disclaimer: Not QCD, so interpret with caution.

ii) Fundamental phase transitions.

D.M., Myers & Thomson '06

Previous related work:

Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

iii) Viscosity of fundamental matter.

D.M., Myers & Thomson '06

Universal viscosity bound

• Conjectured universal bound for relativistic plasmas:

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

Kovtun, Son & Starinets '03

• Saturated at $N_c \to \infty$, $\lambda \to \infty$ by all holographic theories with adjoint matter.

• Results from RHIC are close:

$$\frac{\eta}{s} \sim \frac{1}{4\pi}$$

Teaney '03 Shuryak '03 Romatschke & Romatschke '07 Heinz '07

• What about when quarks are included? QCD and leading $N_{\rm f}/N_{\rm c}$ correction.

iv) Holographic photon production.

D.M., Patiño-Jaidar (to appear)

Why photons?

• QGP is optically thin \rightarrow Photons carry valuable information.

• Holographic results for massless matter:

Caron-Huot, Kovtun, Moore, Starinets & Yaffe '06 Parnachev & Sahakian '06 • To leading order in the electromagnetic coupling constant:

$$\frac{d\Gamma}{d^d \mathbf{k}} = \frac{e^2}{(2\pi)^d \, 2|\mathbf{k}|} \, \frac{1}{e^{k^0/T} - 1} \, \eta^{\mu\nu} \chi_{\mu\nu}(k)$$

 $k = (k^0, \mathbf{k})$, with $k^0 = |\mathbf{k}|$, is the photon null momentum

 $\chi_{\mu\nu}(k) = -2 \operatorname{Im} G^{\mathrm{R}}_{\mu\nu}(k)$ is the spectral density

$$G_{\mu\nu}^{\rm R}(k) = -i \int d^{d+1}x \, e^{-ik \cdot x} \,\Theta(x^0) \langle [J_{\mu}^{\rm EM}(x), J_{\nu}^{\rm EM}(0)] \rangle$$

Holographic calculation

Gauge theory

String theory

 $U(N_{\rm f}) \simeq SU(N_{\rm f}) \times U(1)_{\rm B}$

Conserved $J_{\mu}^{\scriptscriptstyle \mathrm{B}} = J_{\mu}^{\scriptscriptstyle \mathrm{EM}}$

gauge A_µ

AdS/CFT prescription:

$$G_{\mu\nu}^{\rm R} \sim \frac{\delta^2 S_{\rm D7}}{\delta A_{\mu} \delta A_{\nu}}$$

Comments:

• Concentrate on BH embeddings:

• No obvious comparison of M_q -dependence to pQCD: Arnold, Moore & Yaffe 'or $M_{\rm thermal} \sim \sqrt{\lambda}T \gg M_q$

But this assumes existence of quasi-particles!

To compare with experiment

• Calculate photon production rate:

To compare with experiment

• Plug into hydrodynamic simulation of spacetime evolution of the plasma.

• Experimentally distinguish different sources: QGP photons, prompt photons, decay photons, etc.

v) Finite baryon density.

Kobayashi, D.M., Matsuura, Myers & Thomson '06

vi) Future prospects.

Towards far from equilibrium

BH

Horizons encode properties of QGPs:

- Static \rightarrow Thermodynamics: S=A/4G.
- Small perturbations → Near equilibrium, eg. transport coefficients.
- Large perturbations → Far from equilibrium, eg. collective instabilities.

Lots to do at finite density

Caveats: Scalar fields (but not always) and large N_c .

Sakai & Sugimoto

Towards holographic condensed matter

Herzog, Kovtun, Sachdev & Son '07 Hartnoll & Kovtun '07 Hartnoll, Kovtun, Mueller & Sachdev '07

Heavy ion collisions at LHC $T_{RHIC} \sim 2T_{dec}$, $T_{LHC} \sim 4T_{dec}$

