RHIC physics and String Theory: The Fundamental Story

Hirosi Ooguri

David Mateos University of California, Santa Barbara

Plan

i) Motivation. ii) Phase transitions. iii) Viscosity. iv) Photon production. v) Finite density. vi) Future prospects.

i) Motivation.

The QCD challenge

• QCD remains a challenge after 34 years!

The QCD challenge

- QCD remains a challenge after 34 years!
- A string reformulation might help.
- Lots of gauge/gravity examples.
- Unfortunately, QCD dual is not accessible via supergravity.

Therefore:

• Certain quantitative observables (eg. T=0 spectrum) will require going beyond supergravity.

- However, certain predictions may be universal enough to apply in certain regimes.
- Good example: $\eta/s = 1/4\pi$ Gubser, Klebanov & Peet '96

Policastro, Son & Starinets '01

Same for all non-Abelian plasmas with gravity dual!

• How about QCD just above deconfinement?

Results from RHIC indicate η/s - $1/4\pi$.

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Observations:

• Did not know η/s was going to be universal!

Kovtun, Son & Starinets '03

TD7

 $\frac{1}{2}$

^µ^ν [∼] ^δ²SD7

MAR

 $\frac{1}{2}$

BH

 \bullet

• Based on universal property: First order phase of the phase of $\frac{1}{3}$ deconfined

Gravity dual of a deconfined plasma contains a black hole

Observations:

• Combine with another one:

N_f <<N_c quark flavours correspond

Karch & Katz '02

For concreteness will concentrate on D7 probes in D3 background. Γ _c α .

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of ^x4. If it is to be understood as

ii) Fundamental phase transitions.

D.M., Myers & Thomson '06

Previous related work:

Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

iii) Viscosity of fundamental matter.

D.M., Myers & Thomson '06

Universal viscosity bound \overline{c} ¹ \overline{c} versal viscosity bound an operator in the effective four-dimensional theory, then what is the gauge-invariant is the gauge-invariant is omiver sai and in the effective found-dimensional theory, the effective found-invariant is the gauge-invariant intervalse in the gauge-invariant intervalse in the gauge-invariant intervalse in the gauge-invariant intervalse in the ga \blacksquare

 \mathbf{H}

left- and right-handed quarks live at different values of x⁴. If it is to be understood as

· Conjectured universal bound for relativistic plasmas: An additional minor point is that, with the definition of χ^g just above eq. (1.1), five-dimensional operator it descends from? An additional minor point is that, with the definition of χ^g just above eq. (1.1), T_{e} operator is not gauged-independent in the formulativistic plasmacy left- and right-handed quarks live at different values of x4. If it is to be understood as a set of x4. If it is to be understood as a set of x4. If it is to be understood as a set of x4. If it is to be understood as a set

$$
\frac{\eta}{s} \geq \frac{1}{4\pi}
$$
 Kovtun, Son & Starinets 'o₃

left- and right-handed quarks live at different values of at different values of x4. If it is to be understood

This is a beautiful paper that I very much enjoyed reading. I will be happy to be happy to be happy to be happy

recommend its publication provided the authors can clarify the precise meaning of

Kovtun, Son & Starinets '03

• Saturated at $N_c \to \infty$, $\lambda \to \infty$ by all holographic theories with adjoint matter. \bullet Seturated at $N \rightarrow \infty$, i.e., hy all holographic theories five-dimensional operator it descends from? and additional minor point is that, with adjoint matter.

FIGURES HUILT AND ARRIVE. $\frac{1}{s}$ and $\frac{1}{4\pi}$ Roma **• Results from RHIC are close:** $\frac{1}{2} \sim \frac{1}{4}$ Shuryak '03
Romatschke & Romatschke '07

s

• Results from RHIC are close:
$$
\frac{\eta}{s} \sim \frac{1}{4\pi} \max_{\text{Homatschke }\&\text{ Romatschke 'o7}}^{\text{Teaney 'o3}} \left\{\frac{\text{Shuryak 'o3}}{\text{Heinz 'o7}}\right\}
$$

Romatschke & Romatschke '07
Heinz '07 Teaney '03 Shuryak '03 Heinz '07

"Chiral

graphic Dual of Large-N QCD" (1994) , J. High Energy Phys. 05 (2004) 041. $\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \frac{1}{i}$ N correction • What about when quarks are included? Tdec = 175 MeV (3) MeV
Tdec = 175 MeV (3) MeV QCD and leading N_f/N_c correction.

[∼] ^λN^f

MT357AS

iv) Holographic photon production.

D.M., Patiño-Jaidar (to appear)

Why photons?

• QGP is optically thin [→] Photons carry valuable information.

• Holographic results for massless matter:

Caron-Huot, Kovtun, Moore, Starinets & Yaffe '06 Parnachev & Sahakian '06

The distribution of the extremated to be added to the electromagneer in the electromagneer of the state o $\begin{array}{c} \text{or in the electromagnetic couplings} \\\\2\end{array}$ nB(k0) ! To leading order in the electromagnetic coupling cons $n-1$ \sum magnetic coupling constant: · To leading order in the electromagnetic coupling constant: $\overline{}$ c coupling constant:

de

d
d−1200 d−1200

at leading order in the electromagnetic coupling constant e, is then given by [22]

 $\mathcal{L}(\mathcal{L}(\mathcal{L}))$

^ν (0)]\$ (2.6)

^µ (x), J EM

 $\frac{1}{2}$ (2.6)

eko 1 (2.7)

 (x,y)

de

µ

GRI

 $\frac{1}{2}$

 $\frac{1}{2}$

 \mathcal{X}^{R}

 $\frac{1}{2}$

legs) is given in fig. 2. Finally,

$$
\frac{d\Gamma}{d^d\mathbf{k}} = \frac{e^2}{(2\pi)^d 2|\mathbf{k}|} \frac{1}{e^{k^0/T} - 1} \eta^{\mu\nu} \chi_{\mu\nu}(k)
$$

, k), with known λ , with known number λ $k = (k^0, \mathbf{k})$, with $k^0 = |\mathbf{k}|$, is the photon null momentum \mathbf{m} (k) (2.5) $dt_{\rm th}$ $\mu^0 = |{\bf k}|$ is the photon pull momentum. $t_{\rm tot} \approx -\mathbf{K}$, is the photon fight inometrically

 $\alpha_{\rm P}$ (*k*) α images **μν (2.5)** (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) $\chi_{\mu\nu}(k) = -2 \operatorname{Im} G_{\mu\nu}^{\rm R}(k)$ is the spectral density ${\rm ty}$ $\lim_{\mu\nu}$ \int_{μ} is the spectral density

$$
G_{\mu\nu}^{\rm R}(k) = -i\int d^{d+1}x \, e^{-ik\cdot x}\, \Theta(x^0)\langle [J_{\mu}^{\rm EM}(x),J_{\nu}^{\rm EM}(0)]\rangle
$$

 $\mathcal{H}^{\mathcal{U}}$

n
B(ko) = 100 minut

 \mathcal{L}

eko 12 (2.7) + 1 (2.7) + 1 (2.7) + 1 (2.7) + 1 (2.7) + 1 (2.7) + 1 (2.7) + 1 (2.7) + 1

d
⊣11

dd+1x e−ik×x e−ik×x e−ik×x

nB(ko) = 100 km
B(k0) = 100 km
B(k0) = 100 km

Universality and Scaling in AdS/CFT with Flavour with Flavour with Flavour with Flavour with Flavour with Flavo $U(N_f) \simeq SU(N_f) \times U(1)_{\rm B}$ /gauge \Rightarrow Conserved $J^{\text{\tiny B}}_{\mu}=J^{\text{\tiny EM}}_{\mu}$ μ The Company of η r 1 pres
°° $\dot{\mathbf{r}}$ \overline{a} $G_{\mu\nu} \sim$ $\frac{\partial^2 D_{\rm D7}}{\partial A_\mu \delta A_\nu}$ g2 Gauge theory String theory $\mathbf y$ String theory in Additional Company of the Additional Company of the Additional Company of the Additional Company of the Addi
The Additional Company of the Additional Company of the Additional Company of the Additional Company of the Ad A_μ / $\overline{}$ $r^2 + r^2$ U(Nf) 30 U(1)B (3) η ! (2 − 4) × 1 1 Nf !! YMNcT³ (5) gauge five-dimensional operator it descends from? A ADIO graphic calculation which is the usual one, I believe the usual factor in the numerical factor in the numerical factor in the numerator of $\frac{S(\text{tring theory})}{S(\text{tring theory})}$ be a 4, not a 2. Similarly, the a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq. $U(N_f) \cong SU(N_f) \times U(1)_B$ (gauge \sim MeV) μ (1) and Nf/N^c (2) AdS/CFT prescription: $\frac{\partial^2 \mathcal{L}}{\partial x^2}$ ption:
7 A and the ditional minor point is that, with the definition of \mathcal{A} which is the usual orientation $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and d $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and c $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ and $\$ \sim ∼ N_s) A_{μ} $\overline{\mathcal{L}}$ " $\sqrt{2}$ gij (3) de la provincia de la resc (4) $G_{\mu\nu}^{\scriptscriptstyle{\mathrm{R}}} \sim$ $\delta^2 S_{\text{\tiny D7}}$ $\delta A_\mu \delta A_\nu$ η 1 Holographic calculation

YM MAR YN NAS A GWYR A GWYR Y GYMRAIG A GYMRAIG A
Gymraig a gynnwys yn y gynnwys y gynnwys

(6)

Comments: Universality and Scaling in AdS/CFT with Flavour and Scaling in AdS/CFT with Flavour and Scaling in AdS/CFT with F

eq. (2.6).

∼

eq. (2.6).

• Concentrate on BH embeddings:

e2

This is a beautiful paper that I very much enjoyed reading. I will be happy to

This operator is not gauge-invariant in the five-dimensional gauge theory, sincethe

recommend its publication provided the authors can clarify the authors can clarify the precise means of the pre

 F_{r} the viewpoint of \mathbf{M}_{r} dependence to back Ω • No obvious comparison of $\rm M_q$ -dependence to pQCD: proportional to the quark mass, whereas the size of the black hole horizon is proportional $M_{\rm thermal} \sim \sqrt{\lambda} T \gg M_q$ Arnold, Moore \propto rane of be a 4, not a 2. Similarly, there is a factor of 1/2 minutes of 1/2 minutes on the right-most term of 1/2 mi Arnold, Moore & Yaffe '01 omparis m \mathbb{R} . The set of \mathbb{R} is the set of \mathbb{R} , we have the set of \mathbb{R} , \mathbb{R} ,

> But this assumes existence of quasi-particles! gravitational force overcomes the tension of the branes and these are pulled into the horzion. λ (1961) (1961) (1961) (1962) (1961) (1961) (1961) (1961) (1961) (1961) (1961) (1961) (1961) (1961) (1961) (19

In the dual field theory, this phase transition is exemplified by discontinuities in physical

η κατά της κ
Προσειχεί

To compare with experiment

• Calculate photon production rate:

To compare with experiment

• Plug into hydrodynamic simulation of spacetime evolution of the plasma.

• Experimentally distinguish different sources: QGP photons, prompt photons, decay photons, etc.

v) Finite baryon density.

Kobayashi, D.M., Matsuura, Myers & Thomson '06

vi) Future prospects.

Towards far from equilibrium

BH

Horizons encode properties of QGPs:

- Static \rightarrow Thermodynamics: S=A/4G.
- Small perturbations \rightarrow Near equilibrium, eg. transport coefficients.
- Large perturbations \rightarrow Far from equilibrium, eg. collective instabilities.

Lots to do at finite density

Caveats: Scalar fields (but not always) and large N_c.

Sakai & Sugimoto

Towards holographic condensed matter

Herzog, Kovtun, Sachdev & Son '07 Hartnoll & Kovtun '07 Hartnoll, Kovtun, Mueller & Sachdev '07

Heavy ion collisions at LHC TRHIC ~2Tdec , TLHC ~4Tdec

