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Topological String Theory

• Coupling of 2d gravity to matter (ST-geometry)

underlies string perturbation theory

• TST describes the coupling of 2d gravity to topological

matter (subsector)

• Frequently integrable and a large N laboratory to study

non-perturbative completions of string and gauge theory

• Calculates exact terms in sugra effective action → string

phenomenology and 5d/4d black hole physics
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Central objects: Partition function

Z(t) = eF (t) .

Free energy

F (t) =
∑

g

λ2g−2Fg(t) ,

Fopen(t, u) =
∑
g,h

λ2g−2+hthFg,h(u) .

Question: Is Z, Zopen governed by an integrable

structure?
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In the simplest model target space M =pt: 2d gravity.

Large N Matrix model description: Kontsevich model.

Manifestation of the integrable structure:

• F (t) is the τ(t) function of the KdV hierarchy.

• Z(t) fulfills the Virasoro constraints

LmZ(t) = 0, m > −1.

• Boundary conditions: 〈τ0τ0τ0〉 = 1, 〈τ1〉 = 1
24 and

integrability fix Z(t) completely.
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Coupling 2d gravity to topological matter. Twisted

A-model on M (Kaehler):

F (t) =
∑

g,β∈H2(M,Z)

λ2g−2eβtrg
β ,

where

rg
β =

∫
Mg(M,β)

cvir(g, β,M) ∈ Q

are the Gromov-Witten invariants. Symplectic invariant

closely related to integer invariants such as

Donaldson-Thomas and Gopakumar-Vafa invariants.
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Grothendieck-Hirzebruch-Rieman-Roch

dimMg(M,β) =c1(M)·β + (dim(M)− 3)(1− g) ≥ 0

Special in this GHRR dimension formula are

➪ Calabi-Yau manifolds as c1(M) = 0.

➪ complex 3-folds.

➪ the genus one amplitude.

as then dimMg(M,β) = 0 → rβ
g 6= 0: a point counting

problem sometimes solvable by localization.
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rβ
g 6= 0 Calabi Yau 4-folds relevant for M/F-theory

compactifications

• GHRR → rβ
g 6= 0 only for g = 0, 1. This sector is solved

in arXiv:math.ag/0702189 xwith R. Pandharipande

and new integer meeting invariants defined.

Calabi-Yau 3-folds are the critical case.

• GHRR → rβ
g 6= 0, ∀g
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A−model

Aganagic,Klemm Marino, Vafa

Matrix model
large N duality

localisation

large N duality
Vertex
Aganagic,Klemm Marino, Vafa

Relative G−W

B−model

(toric)non−compact CY

Heterotic
−II duality

K3−Fiber g=0 KLM, g=1, Harvey, Moore, all g: Gava, Narain, Taylor, Marino, Moore, Klemm,

Maulik Pandharipande

Pandharipande, Graber, Zaslow,
Liu, Katz

Pandharipande

DT

Holomorphic
anomaly this talk 

compact CY (AS toric)

g=0
?g>0

Kontsevich Giventhal,Yau,Lian..

in principleg small

?

Pandharipande Okounkov, Gathman

?

? Pandharipande, Thomas announced

g=0 Candelas della Ossa, Green,Parkes

Bershadski,Cecotti, Ooguri,Vafa

this talk 

g small
g>0

Okounkov, Maulik,Nekrasov, Pandharipande

Katz, Klemm, Vafa

Kreuzer, Riegler, Scheidegger, Grimm Weiss 07

KS−H Action
BCOV, Pestun, Witten

g =0,1

 07
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Improvement on the B-model solution in the critical case:

After proper incorporation of

• space-time modularity

• N = 2 low energy effective action constraints as

boundary conditions

integrability is as good as in the 2d gravity toy model.
T. W. Grimm, A. Klemm, M. Marino, and M. Weiss, arXiv:hep-th/0702187.

M. x. Huang, A. Klemm, and S. Quackenbush arXiv:hep-th/0612125.

M. Aganagic, V. Bouchard, and A. Klemm, hep-th/0607100.

M. x. Huang and A. Klemm, hep-th/0605195.
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➪ KdV hierarchy → Holomorphic anomaly equations.

∂̄k̄Fg =
∫
M(g)

∂∂̄λ

= 1
2C̄

ij

k̄
(DiDjFg−1 +

∑g−1
r=1 DiFrDjFg−r) .

j= φ

φ j

i

Σ
ij

(−1)FijS
= φφ φi jΣ

ij
ijS

➪ Virasoro constraints → Wave function property of Z[ ∂

∂T̄ I
+

i

8
C̄ JK

I

∂2

∂XJ∂XK

]
Z(X, T, T̄ ) = 0

[ ∂

∂T I
+

i

2
XJC K

IJ

∂

∂XK
+

i

2
CIJKXJXK − i

4
C J

IJ

]
Z = 0 .

➪ Boundary conditions → Gap conditions at bndr of moduli space.
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The integrability equations come from factorization of higher genus

world-sheets, but leaves

• an holomorphic ambiguity (functions)

• s-t modularity → modular ambiguity (discrete data)

• eventually fixed by gap conditions.

Implementation of interplay between w-s and s-t arguments requires

• an understanding of modular group ΓM ,

• control over the metaplectic transformation property of Z(X, T, T̄ )
under ΓM .

Easier the local case → discussed next as example.
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Coupling Seiberg-Witten gauge theory to gravity HK

Geometric engineering realizes e.g. N=2 SU(2) as double

scaling limit of TST on 0(−2,−2) → P1 × P1.

The mirror is an elliptic curve with Γ(2) ∈ SL(2, Z)
monodromy.

Γ =
M

Γ (2) SL(2,Z)

b

a Ω

monopol pointdyon point

moduli space

Universal Curve

*

asymptotic freedom

(     )

(     )−1
−1
2

1
12
0

0
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Modularity and WS degenerations:

➪ Fg(τ, τ̄) invariant under ΓM = Γ(2), e.g.

F1 = − log(
√

Im(τ)ηη̄)

➪ degenerations cap. by Feynmann rules:
=

1−
12

1−
8

+

1−
2

1−
2

+ 1−
2

1−
8

+

+

+

➪ ‘Propagator’ transforms as form of weight 2 (derivative)

= S =
∂

∂τ
2F1 =

1
12

(
E2 −

3
πImτ

)
=: Ê2
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➪ Fg(τ, τ̄) = ξ2g−2
3(g−1)∑
k=0

Êk
2(τ, τ̄)c(g)

k (τ) =: ξ2g−2fg ,x

where ξ = θ2
2

1728θ4
3θ4

4
= 1

F
(0)
aaa

is of weight −3.

➪ Invariance means mathematically

fg ∈ M̂6(g−1)(Ê2,∆, h)

the ring of almost holomorphic functions of Γ(2) of

weight 6(g − 1) finitely generated by

(Ê2, h = θ4
2 + 2θ4

4,∆ = θ4
3θ

4
4) .
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Direct integration:

The only antiholomorphic dependence is in the S ∝ Ê2:
∂
∂τ̄ →

∂
Ê2

:

1
242

d
dÊ2

fg = d2
ξfg−1 + 1

3
(∂τξ)

ξ dξfg−1 +
∑g−1

r=1 dξfrdξfg−r,

with dξfk = ∂τfk + k
3
(∂τξ)

ξ fk Serre operator

➪ Only the degree 0 part in Ê2 remains undetermined. Ambiguity is a holomorphic

modular form c
(g)
0 (τ)∈M6(g−1)(∆, h).

➪ dim
(
M6(g−1)(h, ∆)

)
=
[
3g

2

]
number of required boundary conditions
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Global properties: F(Γ(2))τ  = − 1_
τD

magnetic phase

asymptotic freedom

FD
g (τD, τ̄D) = Fg(−

1
τD

,− 1
τ̄D

)

• ST-instanton expansion

Fg(τ(a)) = limτ̄→∞Fg(τ, τ̄)

• Strong-coupling expansion

FD
g (τD(aD)) = limτ̄D→∞FD

g (τD, τ̄D)

Can be seen as metaplectic transformation on Ψ = Z
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The strong coupling gap :

FD
g =

B2g

2g(2g − 2)a2g−2
D

+ . . . + k
(g)
1 aD +O(a2

D)

↑
2g − 2 independent vanishing conditions

2g − 2 >

[
3g

2

]
➪ theory completly solved

• Other methods: W-S Instanton localisation or vertex, S-T Inst.

localisation Nekrasov, Flume, Poghossian, Nakajima, Okounkov, Yoshioka,. . .
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• are perturbatively defined near 1
a = 0. First coefficients check and

confirm the gap.

Why the Gap ?

• Dijkgraaf & Vafa: SW is described by a matrix model:

Typical in MM is a pole 1
s2g−2 from the measure followed

by a regular perturbative expansion.

• String LEEA explanation: F (λ, t) graviphoton couplings
given by Schwinger-Loop calculation Antoniadis, Gava, Narain, Taylor,

Gopakumar, Vafa. For one HM at conifold Strominger tD mass of HM

F (λ, tD) =
∫ ∞

ε

ds

s

e−stD

4 sin2(sλ/2)
=
∞∑

g=2

(
λ

tD

)2g−2 (−1)g−1B2g

2g(2g − 2)
.
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Compact Calabi-Yau HKQ

W =
5∑

i=1

x5
i − j

1
5
q

5∏
i=1

xi = 0 ∈ P4,

D2

D4

D6

D0

D6 D0

D4
D2

Sp(h ,Z)Γ 3M

H  (M,Z)3

Ω

Ω

CKS
(W)CS (M)=

conifold
orbifold
Gepner point

large CS

M

M

−1

8−1

1

Universal
Mirror Quintic
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M0 =


1 0 0 0
1 1 0 0
5 −3 1 −1
−8 −5 0 1

 , M1 =


1 0 −1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M
−1
∞ =


−4 3 −1 1
1 1 0 0
5 −3 1 −1
8 −5 0 1

 .

generate a discrete subgroup of ΓM = Sp(4, Z) acting

on H3(W, Z) on periods Π(z) =
∫

Γ Ω(z) fullfilling

[θ4 − 5j−1
q

4∏
i=1

(θ + i)] Π(z) = 0, θ := −jq
d

djq
.

Properties of ΓM , even if of finite index unknown, but we

can build modular objects using the periods and special

geometry.
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E.g. from the mirror map an analog of j-function,
q = exp(

∫
C ω) = exp(Π1(jq)/Π0(jq))

jq = 1
q + 770 + 421375 q + 274007500 q2 + 236982309375 q3 + . . .

(je = 1
q + 744 + 196884 q + 21493760 q2 + 864299970 q3 + . . .)

Regularity at the Gepner point is maintained if we
introduce Pg = ξg−1Fg, where ξ = jq

1−jq
= jqX. From the

gap behaviour of the Fg at the conifold jq = 1 and from
regularity at the large CS, we conclude that the
holomorphic and modular ambiguity in Pg is given by

c
(g)
0 =

3g−3∑
i=0

aiX
i
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Intermediate Jacobians

• We have invariant coordinates parametrizing M

jk, k = 1, . . . h21

• Local projective coordinates, suitable for the Wilsonian

action

tk =
Πk

Π0
, k = 1, . . . h21

There two maps φh and φah from M to two intermediate
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Jacobians JGH and JW

φh : M→ τIJ = ∂2F0
∂XI∂XJ

φah : M→NIJ = τ̄IJ + 2iImτIKXKImτILXL

XLImτKLXK ,

XI, I = 1, . . . h21 + 1 a choice of A-periods.

➪ τIJ correponds to C.C. on H3(M, Z) and ImτIJ has signature

(1, h21)

➪ NIJ correponds to ∗ on H3(M, Z) and ImNIJ has signature

(h21 + 1)

M =
(

A B

C D

)
∈ Sp(h3, Z). acts naturally on both

τ̃ = (Aτ + B)(Cτ + D)−1, Ñ = (AN + B)(CN + D)−1.
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On JGH the formalism to treat an-holomorphic part

generalizes immediatly from the local case ABK,GKMW

F1 = −1
2

log det ImτIJ − log |Φ(τ)|+ f1 + f̄1

• E2(τ) generalizes to EIJ(τ) = −i ∂Φ
∂τIJ

.

• Ê2(τ, τ̄) generalizes to ÊIJ
2 (τ, τ̄) = EIJ(τ) − 1

2Imτ IJ

transforming as tensor-form under SP(h3, Z).

• Fg =
3g−3∑
k=0

ÊI1J1 . . . ÊIkJkc
(g)
I1J1...IkJK
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• The an-holomophic part is related to the ‘propagators’

of BCOV S, Si, Sij as

ÊIJ
2 (τ, τ̄) = (XIχJ

i )
(

S −Si

−Si Sij

)(
XJ

χJ
j

)

The generators of the ring of almost holomorphic

modular tensor forms of ΓM are not known, but Yau,

Yamaguchi hep-th/0406078, showed following BCOV

that the Fg can be written as polynomials in 3
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an-holomophic and one holomorphic generator

Ap :=
(j∂j)pGj,j̄

Gjj̄
, Bp := (j∂j)pe−K

e−K , p = 1, . . .

C : = Cjjjj
3, X = 1

1−j

➪ Special geometry & Picard-Fuchs eq. truncate to

A1, B1, B2, B3, X.

➪ One combination does not appear in Pg = Cg−1Fg.

B1 = u, A1 = v1 − 1 − 2u, B2 = v2 + uv1, B3 = v3 − uv2 +

uv1X − c1uX

➪ The Pg are degree 3g − 3 weighted inhomogeneous

polynomials in v1, v2, v3, X,
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➪ hol. anom. eq.

(∂v1 − u∂v2 − u(u + X)∂v3) Pg = −1
2

(
P

(2)
g−1 +

g−1∑
r=1

P (1)
r P

(1)
g−r

)

Boundary conditions:

➪ Gap at the conifold j = 1

FD
g =

B2g

2g(2g − 2)t2g−2
D

+ k1
g +O(tD)

provides 2g − 2 conditions.

➪ Regularity at Gepner point j = 0 provides
[

3(g−1)
5

]
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conditions →
[

2(g−1)
5

]
unkowns.

➪ Castelnouvo’s bound for GV invariants at large radius.

From aqjunction formula in P4 ones find there are no

genus g curves for d ≤ √
g

5

10

15

20

10 20 30 40 50

degree

genus

g=51
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genus degree=18
0 144519433563613558831955702896560953425168536
1 491072999366775380563679351560645501635639768
2 826174252151264912119312534610591771196950790
3 866926806132431852753964702674971915498281822
4 615435297199681525899637421881792737142210818
5 306990865721034647278623907242165669760227036
6 109595627988957833331561270319881002336580306
7 28194037369451582477359532618813777554049181
8 5218039400008253051676616144507889426439522
9 688420182008315508949294448691625391986722

10 63643238054805218781380099115461663133366
11 4014173958414661941560901089814730394394
12 166042973567223836846220100958626775040
13 4251016225583560366557404369102516880
14 61866623134961248577174813332459314
15 451921104578426954609500841974284
16 1376282769657332936819380514604
17 1186440856873180536456549027
18 2671678502308714457564208
19 -59940727111744696730418
20 1071660810859451933436
21 -13279442359884883893
22 101088966935254518
23 -372702765685392
24 338860808028
25 23305068
26 -120186
27 -5220
28 -90
29 0

Table 1: Gopakumar Vafa invariants ng
d in the class d = 18

for the complete intersection X3,3(16).
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5d Black hole microstate counting

M. x. Huang, A. Klemm, M. Marino, and A. Tavanfar,

arXiv:0704.2440 [hep-th].

➪ macroscopic description of 5d black holes Beckenrigde,

Myers,..

S0 = 2π
√
Q3 −m2,

Q graviphoton charge of the black hole.

➪ This charge is fixed by attractor mechanism Strominger,

Ferrara,..

Q =
(

2
9κ

)1
3

d.
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➪ R2 term in Wald’s formula one expects contribution

Sg ∼ χQ
3
2−g

microscopic entropy of 5d spinning BH conjectured by

Katz,Klemm, Vafa

S(d,m) = log(Ω(Q,m)). (1)

with

Ω(d, m) =
∑

r

(
2r + 2

m + r + 1

)
nr

d. (2)

This should agree with the macroscopic result in the

large charge limit Q = d � 1 and Q = d � m.
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➪ J = m = 0

f(d) =
log(Ω(d, 0))

d
3
2

→ 4π

3
√

2κ

agree within 3%.

➪ For J = m = 1 the agreement is in 10% range.

Microscopic perdiction lower.

➪ We find indications that the R2 contributions is

confirmed in micro counting

➪ Indictions that the Dennef, Moore scaling k ∼ 2
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2 4 6 8 10 12 14 16 18

1

1.5

2

2.5

3
bi-cubic in P5:

A(0, d)

A(2, d)

A(3, d)

A(4, d)

4π
3
√

2κ

d


