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Topological String Theory

e Coupling of 2d gravity to matter (ST-geometry)
underlies string perturbation theory

e [ST describes the coupling of 2d gravity to topological
matter (subsector)

e Frequently integrable and a large N laboratory to study
non-perturbative completions of string and gauge theory

e Calculates exact terms in sugra effective action — string
phenomenology and 5d/4d black hole physics



Central objects: Partition function

Z(t) = el

Free energy
F(t) =YX E ()
g

Fopen(tv ”LL) — Z A2g_2+htth,h(u) y
g,h

Question: Is Z, Z,,en, governed by an integrable
structure?



n the simplest model target space M =pt: 2d gravity.

_arge N Matrix model description: Kontsevich model.

Manifestation of the integrable structure:

e F(t) is the 7(t) function of the KdV hierarchy.
e Z/(t) fulfills the Virasoro constraints
L.Z(t)=0, m>—1.

e Boundary conditions: (o) = 1, (m1) = = and

24
integrability fix Z(t) completely.



Coupling 2d gravity to topological matter. Twisted
A-model on M (Kaehler):

F(t) = Z )\29_26&7“% ,
g,ﬁGHQ(M,Z)

where
T%:/ Cmr(gaﬁaM)EQ
MQ(M76)

are the Gromov-Witten invariants. Symplectic invariant
closely related to integer invariants such as
Donaldson-Thomas and Gopakumar-Vafa invariants.



Grothendieck-Hirzebruch-Rieman-Roch

dimM, (M, 3) =c1(M)-8 + (dim(M) — 3)(1 — g) > 0

Special in this GHRR dimension formula are

[1 Calabi-Yau manifolds as ¢; (M) = 0.
[1 complex 3-folds.

[1 the genus one amplitude.

as then dimM (M, 3) =0 — frg # (0: a point counting
problem sometimes solvable by localization.



frg # 0 Calabi Yau 4-folds relevant for M /F-theory
compactifications

e GHRR — rg =+ 0 only for g = 0, 1. This sector is solved
in arXiv:math.ag/0702189 xwith R. Pandharipande
and new integer meeting invariants defined.

Calabi-Yau 3-folds are the critical case.

o GHRR—>T§7AO, Vg
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Improvement on the B-model solution in the critical case:

After proper incorporation of

e space-time modularity

e N = 2 low energy effective action constraints as
boundary conditions

Integrability 1s as good as in the 2d gravity toy model.
T. W. Grimm, A. Klemm, M. Marino, and M. Weiss, arXiv:hep-th/0702187.

M. x. Huang, A. Klemm, and S. Quackenbush arXiv:hep-th/0612125.

M. Aganagic, V. Bouchard, and A. Klemm, hep-th/0607100.

M. x. Huang and A. Klemm, hep-th/0605195.



L1 KdV hierarchy — Holomorphic anomaly equations.

GF, — / )
M(g)

= 1C0Y(D;D;Fy_1 + Y.%_| D;F.D;F,_,) .

[l Virasoro constraints — Wave function property of Z

[i+ié<”< s }Z(XTT)—O
or’ 81 9XJoXKE T

0
OX K

7t 3K

[1 Boundary conditions — Gap conditions at bndr of moduli space.

+ %CIJKXJXK - %CIJJ} Z =

0.
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The integrability equations come from factorization of higher genus
world-sheets, but leaves

e an holomorphic ambiguity (functions)
e s-t modularity — modular ambiguity (discrete data)

e eventually fixed by gap conditions.
Implementation of interplay between w-s and s-t arguments requires

e an understanding of modular group 1"y,

e control over the metaplectic transformation property of Z(X,T,T)
under I'y;.

Easier the local case — discussed next as example.



Coupling Seiberg-Witten gauge theory to gravity HK

Geometric engineering realizes e.g. N=2 SU(2) as double
scaling limit of TST on 0(—2, —-2) — P! x P!,

The mirror is an elliptic curve with I'(2) € SL(2,7)

monodromy.
o
Universa 1 Curve b
moduli space asymptotic freedom
" (42)
dyon poin monopol point

[,=T@c SLR2Z) (3 9)
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Modularity and WS degenerations:
[ F,(7,7T) invariant under I'y; = T'(2), e.g.

Fy = —log(+/Im(7)n1)

[1 degenerations cap. by Feynmann rules:

-5 5@ O
G @D O GO

[1 ‘Propagator’ transforms as form of weight 2 (derivative)

o 1 3 .
— Q= _9F, — E — F
o oT L= 12 < 2 771m7'> :
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05 1 . B
7280368 — 70 is of weight —3.

aaa

where & =

[ Invariance means mathematically

fg S MG(g—l)(E27 A? h)

the ring of almost holomorphic functions of I'(2) of
weight 6(g — 1) finitely generated by

(Ey, h = 603+ 201, A = 0307) .
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Direct integration:

The only antiholomorphic dependence is in the S E:
o . 9.
R %
; ~1
s fo = difor + 37 e for + 00 defide o,
with defr = 0;fx - %8 fi Serre operator

[1 Only the degree 0 part in E remains undetermined. Ambiguity is a holomorphic
modular form Cég)(T)EM(j(g_l)(A, h).

0 dim (M6(g_1)(h,A)) — [%q] number of required boundary conditions



Global properties: Ty F(I'(2))

m magnetic phase

F.(1p,Tp) = Fy(——, ——)

e ST-instanton expansion

Fy(1m(a)) = limsz_ o Fy(T,T)
e Strong-coupling expansion
ng(TD(aD)) — lim;D_woFgD(TD, 7__D)

Can be seen as metaplectic transformation on ¥ = 7
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The strong coupling gap :

b (9)
FD = J -+ BV ap + O(a?
1
2g — 2 independent vanishing conditions
39
20 — 2 > | —
2> |y

[1 theory completly solved

e Other methods: W-S Instanton localisation or vertex, S-T Inst.

|Oca|isati0n Nekrasov, Flume, Poghossian, Nakajima, Okounkov, Yoshioka,. . .
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e are perturbatively defined near % = 0. First coefficients check and
confirm the gap.

Why the Gap 7

® Dijkgraaf & Vafa: SW is described by a matrix model:
Typical in MM is a pole SQQ%Q from the measure followed
by a regular perturbative expansion.

e String LEEA explanation: F'(),t) graviphoton couplings
g'Ven by SCthnger—LOOp Ca|CUIat|On Antoniadis, Gava, Narain, Taylor,
Gopakumar, vara.  FOr one HM at conifold siominger £ p mass of HM

F(\ ¢t )—/OO ds e Z( >29_2 (—1)9' By
R . 848111 (sA/2) _g:2 29(2g — 2)
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Compact Calabi-Yau HKQ

Universal D,
Mirror Quintic 84
[\ 2
1 Dy

large CS

— <D

Gepner point
Ml m)rbﬂ?ﬁ)]dp
conifo
CKS
NS = MW




o o= O

1 0 0 0 1

1 1 0 0 0

Mo = 5 -3 1 -1 |>M=1 ¢
8 -5 0 1 0

generate a discrete subgroup of I'yr = Sp( 7.) acting
on H3(W,z) on periods II(z) = [, Q(z) fullfilling

- d
]qdjq'

—5]q1H9—I— = 0, 0 .=

Properties of I'y;, even if of finite index unknown, but we
can build modular objects using the periods and special
geometry.
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E.g. from the mirror map an analog of j-function,
q = exp(Jow) = exp(IL1(jg) /Mo ()

Jg = 3 + 770 + 421375 g + 274007500 ¢° + 236982309375 ¢3 + . ..
(Je =24 T44 4196884 ¢ + 21493760 ¢* + 864299970 ¢° + .. .)

Regularity at the Gepner point is maintained If we

introduce P, = £971F,, where £ = = j,X. From the
gap behaviour of the F|, at the comfold Jjq = 1 and from

regularity at the large CS we conclude that the
holomorphic and modular ambiguity in P, is given by

39g—3

C(()g) - Z CLZ'Xi

1=0
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Intermediate Jacobians

e We have invariant coordinates parametrizing M

e Local projective coordinates, suitable for the Wilsonian
action

th=F k= 1... hy
L1

There two maps ¢;, and ¢, from M to two intermediate



Jacobians Jog and Jw

.M S
O : 1 T BxTax7
— -ImTIKXKImTILXL
Gan: M — Nij=7r5+2i :

XLlImrpp XK
X!, I=1,...hoy + 1 a choice of A-periods.

[0 775 correponds to C.C. on H3(M,Z) and Im7;; has signature
(17h21)

[0 N7y correponds to * on H3(M,Z) and ImAN7; has signature
(ho1 + 1)

C D
7= (AT 4+ B)(Ct+ D)"" N = (AN + B)(CN + D)~ ..

M = ( A B ) € Sp(h°,7Z). acts naturally on both
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On Jaop the formalism to treat an-holomorphic part
generalizes immediatly from the local case ABK,GKMW

1 _
b = —§log det Im7;; — log |®(7)| + fi + fi
o I5(7) generalizes to B/ (1) = ia(zi_

o E(7,7) generalizes to El/(r,7) = E(r) — %ImTIJ
transforming as tensor-form under SP(h°,Z).

39g—3
_ Alljl A]kjk (g)
° Fg R Z L TR Clljl...IkJK
k=0
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e The an-holomophic part is related to the ‘propagators’
of BCOV S, 5%, 5% as

~ _ S -5 X/
Eg'](T, T) = (XIX%]) ( _gi  Gij ) ( v/ >
J

The generators of the ring of almost holomorphic
modular tensor forms of 1"y, are not known, but Yau,
Yamaguchi hep-th/0406078, showed following BCOV
that the F, can be written as polynomials in 3

25
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an-holomophic and one holomorphic generator

G,

Ap :— ( ) _G ’ Bp :: (]aé)_K_ : p p— 1, e o o
]

[1 Special geometry & Picard-Fuchs eq. truncate to
A17B17B27B37X'

(] One combination does not appear in P, = C9'F,.
By =u, A = v1—1—2u, By = vy +uvy, By = v3 — uvg +
uv1 X — ciuX

LI The P, are degree 39 — 3 weighted inhomogeneous
polynomials in vy, v9, v3, X,



[1 hol. anom. eq.
L@ = ) p)
(O, — uBy, — u(u + X)0y,) Py = 9 (Pgl T Z P"“( >Pg—7“
r=1

Boundary conditions:

[1 Gap at the conifold 57 =1

f’D L B29
g 29—2
29(2g — Q)tD

-k, + O(tp)

provides 2g — 2 conditions.

3(g—1)

[] Regularity at Gepner point ;5 = 0 provides { :

|

27



2(g—1)
5

conditions — { } unkowns.

[1 Castelnouvo’s bound for GV invariants at large radius.
From aqgjunction formula in P* ones find there are no
genus g curves for d < /g

A degree g=51
20 +

15 +
10 —+

5 —+




genus degree=18

0 | 144519433563613558831955702896560953425168536
1 | 491072999366775380563679351560645501635639768
2 | 826174252151264912119312534610591771196950790
3 | 866926806132431852753964702674971915498281822
4 | 615435297199681525899637421881792737142210818
5 | 306990865721034647278623907242165669760227036
6 | 109595627988957833331561270319881002336580306
7 28194037369451582477359532618813777554049181
8 5218039400008253051676616144507889426439522
9 688420182008315508949294448691625391986722
10 63643238054805218781380099115461663133366
11 4014173958414661941560901089814730394394
12 166042973567223836846220100958626775040

13 4251016225583560366557404369102516880

14 61866623134961248577174813332459314

15 451921104578426954609500841974284

16 1376282769657332936819380514604

17 1186440856873180536456549027

18 2671678502308714457564208

19 -59940727111744696730418
20 1071660810859451933436
21 -13279442359884883893
22 101088966935254518
23 -372702765685392
24 338860808028
25 23305068
26 -120186
27 -5220
28 -90
29 0

29



bd Black hole microstate counting

M. x. Huang, A. Klemm, M. Marino, and A. Tavanfar,

arXiv:0704.2440 [hep-th].

[1 macroscopic description of 5d black holes seckenrigde

Myers, ..

S() — 27—‘-\/Q3 _ m27

Q graviphoton charge of the black hole.

L1 This charge is fixed by attractor mechanism stominger,

Ferrara, ..

30



[0 R? term in Wald's formula one expects contribution
3_
Sg ~J XQ2 g

microscopic entropy of bd spinning BH conjectured by

Katz,Klemm, Vafa

S(d,m) = log(€(Q,m)). (1)

with

odm =Y (T Y @

T

This should agree with the macroscopic result in the
large charge limit Q =d>1and Q =d > m.

31



log(§2(d,0))  4m
o

~~
/N
¥
N——"
|
b0

agree within 3%.

O For J = m = 1 the agreement is in 10% range.
Microscopic perdiction lower.

[0 We find indications that the R? contributions is
confirmed in micro counting

[1 Indictions that the Dennef, Moore scaling k ~ 2

32



2.

1.

5

5

bi-cubic in P°:
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