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Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.
The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

not in causal contact and information cannot be transmitted across the bridge. This can

easily seen from the Penrose diagram, and is consistent with the fact that entanglement

does not imply non-local signal propagation.

(a) (b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck
connecting two asymptotically flat regions. (b) Here we have two distant entangled black
holes in the same space. The horizons are identified as indicated. This is not an exact
solution of the equations but an approximate solution where we can ignore the small force
between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the

eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

can consider two very distant black holes in the same space. If the black holes were not

entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

created at t = 0 in the entangled state (2.1), then the bridge between them represents the

entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not
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	  Eternal	  AdS	  black	  hole	  
two interior regions. It is important not to confuse the future interior with the left exterior.

Sometimes the left exterior is referred colloquially as the “interior” of the right black hole,

but we think it is important not to do that. Note that no signal from the future interior

can travel to either of the two exteriors.
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Figure 1: Penrose diagram of the eternal black hole in AdS. 1 and 2, or Left and Right,
denote the two boundaries and the two CFT’s that the system is dual to.

The system is described by two identical uncoupled CFTs defined on disconnected

boundary spheres. We’ll call them the Left and Right sectors. The energy levels of the

QFT’s En are discrete. The corresponding eigenstates are denoted |n�L, |n�R. To simplify

the notation the tensor product state |n�L ⊗ |m�R will be called |n, m�.
The eternal black hole is described by the entangled state,

|Ψ� =
�

n

e
−βEn/2|n, n� (2.1)

where β is the inverse temperature of the black hole. The density matrix of each side is a

pure thermal density matrix.

This state can be interpreted in two ways. The first is that it represents the thermofield

description of a single black hole in thermal equilibrium [6]. In this context the evolution of

the state is usually defined by a fictitious thermofield Hamiltonian which is the difference

of Hamiltonians of the two CFTs.

Htf = HR −HL. (2.2)

The thermofield hamiltonian (2.2) generates boosts which are translations of the usual

hyperbolic angle ω. One can think of the boost as propagating upward on the right side
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not in causal contact and information cannot be transmitted across the bridge. This can

easily seen from the Penrose diagram, and is consistent with the fact that entanglement

does not imply non-local signal propagation.
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Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck
connecting two asymptotically flat regions. (b) Here we have two distant entangled black
holes in the same space. The horizons are identified as indicated. This is not an exact
solution of the equations but an approximate solution where we can ignore the small force
between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the

eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

can consider two very distant black holes in the same space. If the black holes were not

entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

created at t = 0 in the entangled state (2.1), then the bridge between them represents the

entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not
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“Natural”	  producGon	  in	  a	  magneGc	  
field	  	  

that their acceleration in the presence of a magnetic field is set by the magnetic field and

is independent of their mass. The Euclidean instanton contains a charged black hole going

around a circle in Euclidean time. The radius of this circle is set by the acceleration. This

acceleration also leads to a Rindler temperature. The black holes are at this temperature.

They are in equilibrium with the bath of radiation. Interestingly, the total pair creation

rate has an overall factor of e
S
, where S is the entropy of one of the black holes [21]. This

is precisely as expected if the two black holes are in this entangled state. The metric of

the instanton is written in appendix A, as well as its approximate form for small black

holes.

r

dshort

τ

dlong

(a)

t=0

Lorentzian

(b)

Euclidean

Figure 4: (a) Picture of the Euclidean instanton describing the creation of a black hole

pair in a magnetic field. The space consists of two pieces joined along a cylinder with

the topology S
1 × S

2
. The S

1
is the circle drawn here. The bottom “cup” represents an

approximately H2×S
2
geometry which is the near horizon geometry of the extremal black

holes. Despite appearances the distance through the H2 section is shorter than through

the plane. (b) Lorentzian continuation across t = 0 gives a pair of accelerating black holes.

2.5 Different bridges for different entangled states

As it is well known, entanglement is not an observable quantity in the sense of Dirac.

Namely, there is no projection operators PE which acts on two Hilbert space factorsHA and

HB such that PE �= 0 for entangled states and PE = 0 for unentangled states. The reason

is simple, we can write an entangled state as a linear combination of unentangled states.

Thus no such operator exists. Note, however, that we can define projection operators to

particular entangled states. For example, we can ask whether two qubits are in the total

spin zero state. We can also ask whether two qubits are in the spin one, Jz = 0, state.

These are two entangled states

|Ψ0� ∼ |+�|−� − |−�|+� , |Ψ1� ∼ |+�|−�+ |−�|+� (2.5)
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ER	  =	  EPR	  

•  Wormhole	  =	  EPR	  pair	  of	  two	  black	  holes	  in	  a	  
parGcular	  entangled	  state.	  	  

•  Large	  amounts	  of	  entanglement	  can	  give	  rise	  to	  a	  
geometric	  connecGon.	  	  

•  If	  one	  accepts	  very	  ``quantum	  geometries”	  then	  
even	  the	  spin	  ½	  entangled	  states	  could	  be	  
connected	  by	  a	  Gny	  quantum	  wormhole	  in	  some	  
sense.	  	  
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Figure 10: Two black holes in the entangled thermofield state. (a) If Alice and Bob each
jump into their respective black holes, they can meet in the interior. (b) If they wait too
much they will not meet.

they are distributed in space, but it is very important what the pattern of entanglement is.

Assume the qubits are distributed into two shares. In the first illustrative case the qubits

are entangled in Bell pairs, each of which is split into Alice’s share and Bob’s share. The

state can be written

Ψ = |singlet�⊗N (3.2)

The Einstein-Rosen bridges connect the particles in pairs, schematically illustrated in figure

11. Note that there is maximal entanglement between Bob’s share and Alice’s share, but

if we divide the system into to shares differently, there may be no entanglement.

Now let us scramble the state by applying a random unitary operator to it. The

system will become scrambled, and there will be maximal entanglement between any two

subsystems, no matter how they are divided up. Once scrambled the system cannot be

divided into unentangled subsystems. This means that the system of bridges in figure 11

cannot correctly describe the state. It is clear that the system of Einstein-Rosen bridges

in the scrambled case must be connected.

There are a huge number of such states, since the typical state in Hilbert space if of

this form. It is likely that no simple four-dimensional classical geometry exists for most

of them. Possibly, among them there are some for which the Einstein-Rosen bridge can

be interpreted geometrically. The natural guess for these would be a large “nucleus” with

“legs” connecting the nucleus to the qubits in the external space, see fig. 12.

We know very little about such configurations, but there is one constraint that should

be satisfied, assuming the nucleus has a geometry that can be described by Einstein’s

19
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Spread	  of	  entanglement	  

Local	  entanglement	  across	  the	  	  
horizon	  at	  t=0	  

The	  entanglement	  becomes	  more	  	  
non	  local	  as	  Gme	  increases.	  Due	  to	  the	  	  
moGon	  of	  the	  parGcles	  in	  each	  copy	  of	  	  
the	  field	  theory.	  	  

Van	  Raamsdonk	  
Hartman,	  JM	  
…	  



	  	  

Right horizonLeft horizon

Minimal surface computing

the entanglement

Figure 7: Penrose diagram of a configuration obtained by analytic continuation of a time
reflection symmetric, but time dependent, Euclidean solution. The two horizons do not
touch. The entanglement, computed by the Ryu-Takayanagi prescription [24], is given by
the area of a minimal surface with less area than the horizons.The area of the horizons
grows when we go from the bifurcation point to the future.

2.7 Growth of the Bridge

Einstein-Rosen bridges are not traversable. As an observer jumps into the black hole, he

sees that the transverse two sphere shrinks as he approaches the singularity. Thus, it is

sometimes said that the bridge closes, or pinches off, before he can get through [3]. A

related feature is that as global time evolves the bridge stretches. Its length grows so fast

that no signal can get through. In figure 8 a particular slicing of the upper half of the

Figure 8: Equal time slices for the eternal black hole. The slices grow in size in the
interior. The spatial distance between opposite points on the stretched horizon grows.
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Changing	  the	  entangled	  state	  
•  Time	  evoluGon	  à	  Different	  slicingsà	  phases	  
	   |Ψ� =

�

n

e−2iEnte−βEn/2|En�CPT
L × |En�R

There is a standard projector operator P0 = |Ψ0��Ψ0| that tests whether the system is the

entangled state |Ψ0�, and a different one that tests whether it is in the other state.

We claim that we should think of the bridges associated to these two states as being

different. In fact, we can see this clearly in the case of the eternal black hole. In this case,

we can consider the following family of Schrodinger picture states

|Ψt� ∼
�

n

e
−βEn/2e

−2iEnt|n, n� (2.6)

Two states with different values of t are related by forward time evolution on the two sides.

However, consider them as possible alternative states at the same instant of time and view

t in (2.6) as a parameter labeling alternative states at a common instant of time. All these

states have “maximal” entanglement and the same density matrix on each side. There is a

projection operator Pt into each of these states. However, there is no projection operator

onto the whole family, since considering linear combinations such as
�
dte

2iE0t|Ψt� projects
us into a particular state |n0, n0�, which is the one having the energy E0. This state is not

maximally entangled.

B
A

(c)

B
A

(b)(a)

Figure 5: (a) The yellow shaded region corresponds to the Einstein Rosen bridge associated
to the entangled state |Ψt=0� in (2.6) (for an AdS3/CFT2 situation). One can draw different
spatial sections in the geometry. The physics in these slices is related by the bulk Wheeler
deWitt equation. (b) Here we see the bridge corresponding to the entangled state |Ψt�,
for r > 0. (c) This is a different presentation of the same bridge as in (b), related by the
action of a boost HR − HL. Even though the states (a) and (c) are different, they both
contain regions A and B which look the same.

Now, we claim that the precise bridge associated to each state in the family (2.6)

10
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to	  more	  than	  one	  state.	  	  



such a way that we create a state with finite Minkowski energy. We can ask what this

operation corresponds to in the AdS example. For simple
13

unitary operators such states

are expected to add additional particles on top of the Hartle-Hawking vacuum, as discussed

in section 2.5.
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t

(b)

(d)(c) 

(a)

Figure 21: (a) Minkowski vacuum in terms of the Rindler modes along the left and right

Rindler spatial slices. Along these slices, the state (5.3) is regular and but (5.5) is singular.

(b) We boosted the left slice. Now the state (5.5) is regular. In (c) we consider the usual

thermofield state (2.1). In (d) we consider the result of adding a left time translation to

the thermofield state (2.4). We get a regular state.

Let us study the gravitational back reaction in one very particular case. Imagine that

what we do is to add the phase θ(ω) = −ωt so that we consider the particular state

Uθ|0�M = exp

��
dωe−βω/2e−iωtb†L,ωb

†
R,ω

�
|0�R (5.5)

This is a state with infinite Minkowski energy.

However, this state, (5.5), can also be viewed as the expression for the Minkowski

vacuum but quantized along a different spatial slice, a slice with a kink as in figure 21(b).

Thus the state (5.5) is very singular if we view it as quantized along the slice in figure

21(a), but non-singular along the slice 21(b). Now, if we take this second point of view,

13We are not making any statement about “generic” unitary operators.
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|Ψ� =
�

n

e−iEnte−βEn/2|En�CPT
L × |En�R Non-‐singular	  in	  gravity	  



Other	  states	  

of the copies of the field theory. Depending on the precise unitary transformation we will

get states with different particles. These are further examples of different entangled states

corresponding to different bridges between the two sides.

(a) (b)

t=0 t=0

Figure 6: (a) Construction of the entangled Hartle Hawking state from Euclidean evo-
lution. This creates very particular entangled bulk and boundary states. (b) We can
add particles on top of the Hartle Hawking vacuum by adding operators on the boundary
theory.

Of course, we can also consider bridges, as in figure 6(b), with an arbitrary configuration

of bulk particles. These are all different bridges corresponding to different entangled states,

though they are not all maximally entangled.

2.6 Bridges for less than maximal entanglement

In the Penrose diagrams we have discussed the Left and Right horizons touch each other.

It is also possible to have configurations where they do not touch each other. A simple

way to generate them is to start from two eternal black holes and add some matter to each

side. These configurations can also be prepared by considering Euclidean evolution with

a time dependent Hamiltonian, see [23] for some explicit solutions7. The Penrose diagram

of such configurations is given in figure 7.

7The solutions in [23] are based on Janus solutions. Their boundary in Euclidean space has the form
S1×Σ where Σ is a quotient of hyperbolic space. The S1 is divided in two equal parts and the dilaton has
a different value on each part. The Lorentzian continuation is obtained by continuing across the moment
with a time reflection symmetry. The two boundaries different values for the dilaton. These values are
constant in time. The bulk smoothly interpolates between the two.

12

Adding	  parGcles	  to	  the	  Hartle-‐Hawking	  state.	  	  
Precise	  translaGon	  between	  states	  in	  the	  CFT	  and	  	  
states	  in	  the	  bulk.	  	  



•  Entangled	  states	  can	  be	  connected	  by	  a	  smooth	  
geometry.	  	  

•  Each	  entangled	  state	  corresponds	  to	  a	  whole	  
region	  of	  the	  bulk,	  with	  slices	  related	  by	  the	  
WdW	  equaGon.	  	  

•  Different	  entangled	  states	  correspond	  to	  
different	  geometries,	  or	  the	  same	  geometry	  plus	  
extra	  parGcles.	  	  

•  We	  did	  not	  make	  a	  statement	  about	  the	  generic	  
entangled	  state.	  	  



Version	  of	  the	  AMPS	  paradox.	  	  

by Bob. But the corruption is restricted to a single A,B pair, and does not affect other

modes. In any case the corruption was created by Alice when she extracted A�. This case

is simpler because there is no complicated distillation process to be done, the extraction

of A�
is fairly straightforward.

It is worth noting that Bob would detect the particle even if he had no knowledge that

Alice had distilled A�.

(a)

(c)

(b)

A
B

A’

B

O

A’

A’

A

O

A’

BA’

Figure 17: (a) Here we see a mode B which is entangled with A. The mode A comes

from the evolution of A�
. (b) The mode A�

is caught by the black bulk object and carried

to the boundary. This process has corrupted the mode A and created a particle O on top

of the Hartle Hawking state. (c) A laboratory technician, who lives outside the shells,

represented by the thick brown line, takes the qubit A�
from one CFT to the other CFT.

There she gives it to Bob. Now Bob sees that A�
and B are maximally entangled. But B

is not entangled with O.

Now let us consider what happens if Alice waits until time t and then distills A��. This

is a much harder process because A��
is a complex operator which has been scrambled

among the stretched horizon degrees of freedom. But by construction it has exactly the
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Two	  CFT’s	  in	  the	  lab	  in	  the	  entangled	  state.	  	  
We	  disGll	  the	  qubit	  entangled	  with	  B	  and	  	  
give	  it	  to	  a	  bulk	  observer	  on	  the	  right.	  	  
In	  the	  process	  we	  replace	  A	  by	  an	  	  
uncorrelated	  qubit.	  	  

Hawking,	  	  
Mathur,	  	  
Giddings,Shi,	  Braunstein,	  
Almheri,	  Marolf,	  Pochinski,	  Sully	  	  

Similar	  points:	  	  Papadodimas,	  Raju,	  Verlinde2	  	  



•  We	  can	  view	  the	  leh	  side	  as	  ``processed’’	  
radiaGon.	  	  

•  What	  we	  do	  to	  the	  radiaGon	  maMers	  for	  what	  an	  
infalling	  observer	  sees.	  	  

•  The	  AMPS	  paradox	  is	  real	  (if	  we	  ignore	  
computaGonal	  constraints).	  	  

•  Some	  states	  are	  not	  smooth.	  	  
•  What	  happens	  if	  we	  do	  nothing	  ?.	  What	  is	  the	  
parGcular	  entangled	  state	  produced	  by	  the	  
``natural’’	  evoluGon	  of	  an	  evaporaGng	  black	  
hole	  ?	  	  

Harlow	  Hayden	  



the stretched-horizon and zone of the black hole. Whether or not they were initially

scrambled, after a time of order M logM they will become scrambled and therefore highly

entangled in all combinations. It seems reasonable to expect the nucleus of figure 12 will

evolve into the interior of the black hole. In other words after the scrambling time (but long

before the Page time) the interior of the black hole is the Einstein-Rosen bridge system

that connects the massively entangled near-horizon system of a black hole.

3.6 Hawking Radiation

The Hawking radiation of a black hole is a scrambled cloud of radiation entangled with

the black hole. The obvious configuration of the Einstein-Rosen bridge would resemble

the standard two-black-hole case except that Alice’s black hole would be replaced by the

Hawking radiation. We can draw a very impressionistic cartoon of the black hole connected

to the radiation by a Einstein-Rosen bridge with many exits, see figure 13.

Black holeBlack hole

.

Hawking radiationBlack hole

Figure 13: Sketch of the entanglement pattern between the black hole and the Hawking
radiation. We expect that this entanglement leads to the interior geometry of the black
hole.

Another representation is shown in figure 14. This figure shows only the geometrical

Einstein-Rosen bridge part of space. On the far left the interior of a young, one-sided black

hole is shown. The black circle represents the horizon which should be identified with the

horizon as seen from the exterior side. In the beginning there is no Hawking radiation.

As we move to the right Hawking quanta are emitted, and since they are entangled with

the black hole, they have to be connected to the bridge. The red dots represent the places

where the Hawking quanta connect to the main body of the bridge. The earlier quanta

are to the right of the later quanta. The green circles represent slices through the bridge

that divide the system into two parts. To the right of the circle the quanta were emitted
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Black	  hole	  +	  radiaGon	  ?	  	  



(b)(a)

Figure 15: (a) A possible diagram for the bridge connecting an old evaporating black hole

to the radiation. The radiation little wormhole mouths would join along the thick black

line. When we look at an old black hole we are looking at the upper corner of the Penrose

diagram of the original black hole. When we do a time translation (or boost) to focus

on the late time region we squeeze the trajectories of the early radiation along the past

horizon. (b) The diagram in the firewall scenario, where the smooth geometry stops right

behind the horizon. (These diagrams do not take into account the complete evaporation

of the black hole).

[12]. In the language of qubits the simplicity of an operator represents the number of

computational qubits that are involved in its definition. In the black hole radiation the

concept of a computational qubit is replaced by the local modes of the radiation field. If

we ignore states with more than one quantum in a mode then the localized modes can

be replaced by computational qubits. The simple operators in this context are made of a

single radiation mode. They are easy to measure or to encode in another system.

By contrast, the operators RB in [32] are extremely complex. These are the operators

that Harlow and Hayden [19] identify as computationally difficult to access. They are

non-locally distributed over the at least half the total number of radiation modes. If the

initial entropy of the black hole is S then complex operators involve of order S radiation

modes.

In our ADS/CFT-based model we will work in the Schrodinger picture. The simple

units which are easily accessed are the local single-trace operators in the boundary CFT.

The most complex operators are very non-local expressions in the gauge theory. They

may involve large-scale Wilson loops and even more complicated objects. Experience has

shown that the deeper one probes into the interior of AdS, the more complex the probes

have to be. An example is the precursor operators in [39].
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Firewall	  
Smooth	  horizon	  	  

or	  	  

	  	  



Easy	  measurements	  

B

A

A’

A’’

E

Figure 18: The mode A�
evolves to A through bulk evolution. A��

is the scrambled operator

in the left CFT that creates the same mode A�
but at a later left boundary time. At that

later time we can also act with a simple operator E. According to the bulk picture this

operator creates a simple gravity mode that falls into the singularity and does not disturb

A.

it does not commute with j. A similar issue arises for the stress tensor and operators that

change the energy in the interior.

In the gravity theory it is not possible to define local gauge invariant operators. Now,

this is usually viewed as a minor nuisance, which should not be important in the limit

that the bulk effective field theory is valid. However, it highlights the fact that a non-

zero commutator in the boundary theory does not translate into an effectively non-zero

commutator in the bulk.

In order to make sure that we are not doing anything illegal from the bulk point of

view, it may be better to think in terms of bulk solutions of the Wheeler de Witt equations.

For each particular entangled state, at a particular value of the boundary time, we have

a bulk solution to the Wheeler deWitt (WdW) equation that describes the region that

is spacelike separated from the boundary. Different pure entangled states are different

solutions of the WdW equation. Thus, we have a correspondence between states in the

boundary Hilbert spaces and states in the bulk.

Using this, we can compute the overlap between different states. As usual in the WdW

approach, this overlap can be computed along any spatial slice. In this fashion, we can, in

principle, compute the result of bulk experiments, such as a scattering experiment in the

interior. See figure 19(b).

The statement that the commutator is effectively zero in the bulk means that the

result of a scattering experiment in the bulk should not depend on the addition of a

particle caused by the action of E, see figure 19(c). If the addition of E moves around the
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According	  to	  the	  bulk	  	  
E	  does	  not	  modify	  A.	  	  
But	  we	  expect	  that	  A’’	  and	  E	  not	  	  
to	  commute.	  	  

We	  can	  create	  a	  large	  disrupGon	  	  
by	  measuring	  E	  in	  the	  past	   Shenker,	  Stanford	  



Measuring	  E	  does	  not	  destroy	  the	  
qubit	  entangled	  with	  B	  

5.3 Information contained in A and error correction

Here we would like to emphasize that the action of the simple operator E does not destroy

the information that is highly delocalized. As a simple argument consider the following.

Note that B is almost maximally entangled with any subsystem that contains more than

half the total number of degrees of freedom. For example, in figure 20 we show a system

of 70 qubits with the qubit at the upper left corner representing B. Two subsystems, each

Figure 20:

with more than half the total number of qubits, are shown in blue. Moreover the overlap

between the two subsystems can be small. In either of these subsystems we can find a

qubit that is maximally entangled with B, which we are calling RB. In this way different

candidates for RB can be constructed.

Now assume that E was contained in the construction of RB. One can always choose

another R�
B that does not involve E. R�

B is also almost maximally entangled with B and

contains the same quantum information as RB to a very high approximation. But

[R�
B, E] = 0. (5.2)

Thus if we identify R�
B with A, the measurement of E does not disturb the AB system.

We suggest that the correct prescription is to always employ an R�
B that commutes

with E.

As another argument that the information contained in A is not destroyed by the easy

measurement E, we can make an analogy with quantum error correction. The connection

with error correction was also studied in [35]. We view A as a message that has been

encoded in the radiation. The action of the operator E can be viewed as an error. These

errors act in a simple way in the radiation basis, which we view as the computational

basis. Because the radiation system is in a random state one expects the encoding of A
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Measuring	  E	  does	  destroy	  the	  entanglement	  of	  B	  with	  the	  rest	  of	  the	  system.	  
	  
Similar	  to	  the	  story	  of	  quantum	  error	  correcGon.	  (This	  argument	  can	  only	  fix	  less	  
than	  S/4	  random	  measurements)	  	  
	  
Crucial	  difference	  with	  measuring	  A’	  	  (or	  RB	  ,	  which	  is	  the	  qubit	  entangled	  with	  B)	  



Comments	  
•  In	  the	  gauge	  gravity	  duality,	  bulk	  locality	  within	  
an	  AdS	  radius	  is	  a	  strong	  coupling	  phenomenon.	  	  

•  AdS	  black	  holes	  are	  such	  that	  the	  proper	  Gme	  an	  
observer	  spends	  in	  the	  interior	  is	  less	  than	  an	  AdS	  
radius.	  	  

•  To	  disGnguish	  a	  putaGve	  firewall	  at	  the	  horizon	  
from	  the	  expected	  one	  at	  the	  singularity	  we	  need	  
to	  understand	  this	  bulk	  locality.	  	  

•  I	  think	  that	  a	  proper	  understanding	  of	  the	  interior	  
will	  probably	  need	  a	  proper	  understanding	  of	  
bulk	  locality	  (within	  an	  AdS	  radius).	  	  



Conclusions	  

•  We	  gave	  an	  EPR	  interpretaGon	  to	  the	  ER	  bridge.	  	  
•  The	  topology	  of	  space	  can	  be	  modified	  by	  
massive	  amounts	  of	  entanglement.	  	  

•  A	  black	  hole	  entangled	  with	  radiaGon	  could	  
produce	  a	  similar	  geometric	  bridge.	  Its	  interior	  
could	  depend	  on	  what	  we	  do	  with	  the	  radiaGon.	  	  	  

•  We	  discussed	  the	  AMPS	  paradox	  and	  saw	  that	  in	  
this	  case,	  it	  is	  resolved	  by	  noGcing	  that	  the	  
interior	  is	  made	  both	  the	  black	  hole	  microstates	  
and	  the	  states	  entangled	  with	  them.	  	  
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Less	  than	  maximal	  entanglement	  

Right horizonLeft horizon

Minimal surface computing

the entanglement

Figure 7: Penrose diagram of a configuration obtained by analytic continuation of a time
reflection symmetric, but time dependent, Euclidean solution. The two horizons do not
touch. The entanglement, computed by the Ryu-Takayanagi prescription [20], is given by
the area of a minimal surface with less area than the horizons.The area of the horizons
grows when we go from the bifurcation point to the future.

that no signal can get through. In figure 8 a particular slicing of the upper half of the

Figure 8: Equal time slices for the eternal black hole. The slices grow in size in the
interior. The spatial distance between opposite points on the stretched horizon grows.

Penrose diagram is indicated. A stretched-horizon is introduced on each side and the slices

are conventional time-slices outside the horizons. Inside they are somewhat arbitrary. An

invariant statement is that the spatial distance between a point on the L horizon and one

on the R horizon grows as we move these points to the future, keeping them on the horizon.

There seems to be an intimate connection between the entanglement of the underlying

13
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Entanglement	  paMern	  	  
	  across	  the	  horizon	  
	  
A	  small	  region	  of	  one	  horizon	  	  
is	  entangled	  with	  the	  corresponding	  	  
small	  region	  on	  the	  other.	  	  
	  
(Using	  tensor	  networks)	  
Abajo-‐ArrasGa,	  Aparicio,	  Lopez,	  Albash,	  Johnson	  
Balasubramanian,	  BernamonG,	  de	  Boer,	  Copland,	  	  
Craps,	  Keski-‐Vakkuri,	  Muller,	  Schafer,	  Galli,	  Takayanagi,	  
	  Ugajin,	  Asplund,	  Avery,Basu,	  Das,	  Nishioka,	  Buchel,	  
Lehner,	  Myers,	  Van	  Niekerk,	  Nozaki,	  Numasawa,	  Allais,	  
	  Tonni,	  	  Hartman,	  JM,	  Liu,	  Li	  
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Figure 7: Penrose diagram of a configuration obtained by analytic continuation of a time
reflection symmetric, but time dependent, Euclidean solution. The two horizons do not
touch. The entanglement, computed by the Ryu-Takayanagi prescription [24], is given by
the area of a minimal surface with less area than the horizons.The area of the horizons
grows when we go from the bifurcation point to the future.

2.7 Growth of the Bridge

Einstein-Rosen bridges are not traversable. As an observer jumps into the black hole, he

sees that the transverse two sphere shrinks as he approaches the singularity. Thus, it is

sometimes said that the bridge closes, or pinches off, before he can get through [3]. A

related feature is that as global time evolves the bridge stretches. Its length grows so fast

that no signal can get through. In figure 8 a particular slicing of the upper half of the

Figure 8: Equal time slices for the eternal black hole. The slices grow in size in the
interior. The spatial distance between opposite points on the stretched horizon grows.
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