The Intersection Numbers of the Standard Model

Luis E. Ibáñez

Instituto de Física Teórica (IFT)

Universidad Autónoma de Madrid

Strings-2002 Cambridge, July 2002

Traditional approach to SM embedding in String Theory

ullet Prototype: Heterotic $E_8 imes E_8$ compactified on a CY or Orbifold. Thus e.g., in CY's one has:

$$N_{gen} = \frac{1}{2}\chi$$

PRESENT STATUS:

- A number of 3-generation models have been constructed
- At present no model yielding JUST the SM or MSSM spectrum exists
- Typically extra fermions and U(1) bosons remain at low energies
- As a consequence the nice joining of gauge couplings in the
 MSSM has not yet been reproduced in a string context
- In all models studied proton stability appears as a consequence of arbitrarly chosen charged scalar flat directions.
- Models based on strongly coupled heterotic lead to analogous structure.

Bottom-Up Approach: D-branes as building blocks

Can we build a D-brane description of the Standard Model?

From such description of the SM one hopes:

- Unification of gravity and SM interactions
- Construct string realization of brane-world idea (perhaps)
- But also to find new avenues to understand misteries of the SM like:
 - Family triplication
 - The unreasonable stability of the proton
 - Fermion mass hierarchies
 - etc.

Chiral fermions

- A crucial requirement on the searched D-brane configuration is that it should lead to CHIRAL FERMIONS
- ullet D-branes on a smooth space leads to non-chiral theories (N=4 SUSY)

Simplest ways to get chirality in explicit D-brane models (NOT unrelated):

- D-branes at singularities (e.g., orbifold sing.)
- Intersecting D-branes ⇒

• Talk based on:

- L.I., F. Marchesano and R. Rabadán, hep-th/0105155
- D. Cremades, L.I, F. Marchesano , hep-th/0201205; hep-th/0203160; hep-th/0205074

Previous related work:

- R. Blumenhagen, L. Görlich, B. Kors, D. Lüst, hep-th/0007024
- G. Aldazabal, S. Franco, L.I., R. Rabadán, A. Uranga, hep-th/0011073; hep-ph/0011132
- R. Blumenhagen, B. Körs and D. Lüst, hep-th/0012156

also:

- R. Blumenhagen, B. Körs, D. Lüst, T. Ott, hep-th/0107138
- M. Cvetic, G. Shiu, A. Uranga, hep-th/0107166; hep-th/0107143
- D. Bailin, G. Kraniotis, A. Love, hep-th/0108131
- S. Förste, G. Honecker, R. Schreyer, hep-th/0008250
- G. Honecker, hep-th/0112174; hep-th/0201037
- C. Kokorelis, hep-th/0203187; hep-th/0205147

• brane intersections/fluxes :

- C. Bachas, hep-th/9503030
- M. Berkooz, M. Douglas, R. Leigh, hep-th/9606139
- C. Angelantonj, I. Antoniadis, E. Dudas, A. Sagnotti, hep-th/0007090

WHY INTERSECTING BRANES?

They have a number of properties present in the SM:

- $\ensuremath{\mathbf{0}}$ Gauge group: Each stack of N branes carries a U(N) gauge theory.
- **2** Chirality: Two intersecting branes present chiral fermions at their intersection, transforming in bifundamental (N, \bar{M}) or (N, M).

3 Family replication: Branes at angles wrapping a compact manifold may intersect several times.

TRIPLICATION EXAMPLE

- Consider a pair of D4-branes
- ullet 5-dimensional worldvolume = $M_4 imes C^1$, C^1 wrapping a cycle on a 2-torus

'a' and 'b' 4-branes intersect at three points

• wrapping numbers (n,m) = (1,0), (1,3)

Minimal Structure of SM D-brane settings

Configuration of 4 stacks of branes:

stack a	$N_a = 3$	$SU(3) \times U(1)_a$	Baryonic brane
stack b	$N_b = 2$	$SU(2) \times U(1)_b$	Left brane
stack c	$N_c = 1$	$U(1)_c$	Right brane
stack d	$N_d = 1$	$U(1)_d$	Leptonic brane

SM from **Dp-branes** wrapping cycles

Varieties of Toroidal Intersecting Brane settings

Type II A, B String Theory

 $oldsymbol{0}$ D4-branes wrapping 1-cycles on $T^2 imes R^4/{f Z}_N$

2 D5-branes wrapping 2-cycles on $T^4 imes R^2/{f Z}_N$

3 D6-branes wrapping 3-cycles on T^6

Generations = # Colors ?

• Important constraint in ANY D-brane model with fermions in bifundamentals (comes from RR-tadpole cancellation):

Number of
$$N$$
-plets = Number of \bar{N} -plets of $U(N)$

This is true even for U(2) or U(1).

• Impose Number of 2-plets = Number of $\bar{2}$ -plets of U(2)

Left-handed SM fermions:

3
$$Q_L$$
 = 3 $(3,2)$ \longrightarrow 9 2-plets 3 L = 3 $(1,\bar{2})$ \longrightarrow 3 $\bar{2}$ -plets

→ Minimal SM has 'U(2) anomalies'

6 extra fermion SU(2) doublets needed to cancel anomalies.

• Simple way to Cancel Anomalies :

this works only because # COLORS = # GENERATIONS

(N,M) and (N,\bar{M}) bifundamentals and orientifolds

We need (N,M) and (N,\bar{M}) bifundamentals to get the $\mbox{minimal}$ fermion spectrum of the \mbox{SM}

• In string theory they appear in orientifold models:

Orientifold = Type II
$$/\Omega \mathcal{R}$$

$$\Omega = \text{worldsheet-parity} \quad ; \mathcal{R} = \text{some geometrical action (e.g., reflection)}$$

ullet Under $\Omega\mathcal{R}$:

Dp-brane
$$\longleftrightarrow$$
 Dp*-brane = 'mirror' = $(\Omega \mathcal{R})$ Dp

Both brane and mirror need to be present in an orientifold configuration

Quantum numbers of SM in intersecting brane models

Assuming all fermions come from bifundamentals and imposing #N-plets = $\#\bar{N}$ -plets leads to the following model independent unique structure (up to redefinitions):

Intersection	Matter fields		Q_a	Q_b	Q_c	Q_d	Q_Y
(ab)	Q_L	(3, 2)	1	-1	0	0	1/6
(ab*)	q_L	2(3,2)	1	1	0	0	1/6
(ac)	U_R	3(3,1)	-1	0	1	0	-2/3
(ac*)	D_R	$3(\bar{3},1)$	-1	0	-1	0	1/3
(bd*)	L	3(1,2)	0	-1	0	-1	-1/2
(cd)	N_R	3(1,1)	0	0	1	-1	0
(cd*)	E_R	3(1,1)	0	0	-1	-1	1

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_d$$

Where hypercharge is defined as:

$$Q_Y = \frac{1}{6}Q_a - \frac{1}{2}Q_c - \frac{1}{2}Q_d \tag{1}$$

(Orthogonal linear combinations will be massive, see below)

D6-BRANES WRAPPING AT ANGLES ON T^6

Setup: type IIA D6-branes filling M_4 and wrapping 3-cycles on T^6 .

We further assume having a factorized torus and factorizable 3-cycles:

$$T^6 = T^2 \times T^2 \times T^2$$

3-cycle = 1-cycle \times 1-cycle \times 1-cycle

$$[\Pi_a] = (n_a^1, m_a^1) \times (n_a^2, m_a^2) \times (n_a^3, m_a^3)$$

Intersection number: $I_{ab}=I^1_{ab}\times I^2_{ab}\times I^3_{ab}$ $I^i_{ab}=\left(n^i_am^i_b-m^i_an^i_b\right)$

ORIENTIFOLD

Consider the theory

$$\frac{\text{Type IIA on } T^6}{\Omega \mathcal{R}} \overset{T-dual}{\longleftrightarrow} \text{Type I on } \tilde{T}^6$$
 (2)

 $\boldsymbol{\Omega}$: Worldsheet parity.

$$\mathcal{R} = \mathcal{R}_{(5)} \mathcal{R}_{(7)} \mathcal{R}_{(9)}$$

Consequences:

- **1** only some tori lattices are allowed by $\Omega \mathcal{R}$ action: square $(b^{(i)}=0)$ or tilted $(b^{(i)}=\frac{1}{2})$.
- Mirror branes should be added

For each D6-brane a in our model, we must add its mirror image a^* under $\Omega \mathcal{R}$.

Deffine effective wrapping numbers as

$$(n_a^i, m_a^i)_{\text{eff}} \equiv (n_a^i, m_a^i) + b^{(i)}(0, n_a^i),$$

Then $\Omega \mathcal{R}$ action reduces to

D6 – brane
$$a \mapsto D6$$
 – brane a^*

$$(n_a^i, m_a^i) \qquad (n_a^i, -m_a^i) \tag{3}$$

Fermion spectrum

• $D6_aD6_a$ and $D6_a*D6_a*$ sectors : $U(N)\mathcal{N}=4$ SYM.

• $D6_aD6_b$ and $D6_aD6_b*$ sector: bifundamental fermion representations $I_{ab}(N_a,\overline{N_b})+I_{ab*}(N_a,N_b)$

(asuming each brane does not intersect with its own mirror, which would lead to additional exotic symmetric/antisymmetric fermion fields)

RR Tadpole Cancellation Conditions

ullet Consistent compactifications must satisfy RR Tadpole conditions, which imply a vanishing total Charge under certain Ramond-Ramond antisymmetric fields. This automatically ensures non-abelian $SU(N_a)^3$ anomaly cancellation:

$$\sum_{c} N_c I_{ac} = 0.$$

Notice that, as advertised, in these systems $SU(N)^3$ anomaly cancellation reduces to

fundamentals = # antifundamentals

• If D6-branes have wrapping numbers $(n_a^1, m_a^1)(n_a^2, m_a^2)(n_a^3, m_a^3)$ the conditions read:

$$\sum_{a} N_{a} n_{a}^{1} n_{a}^{2} n_{a}^{3} = 16$$

$$\sum_{a} N_{a} n_{a}^{1} m_{a}^{2} m_{a}^{3} = 0$$

$$\sum_{a} N_{a} m_{a}^{1} n_{a}^{2} m_{a}^{3} = 0$$

$$\sum_{a} N_{a} m_{a}^{1} m_{a}^{2} n_{a}^{3} = 0$$

$$\sum_{a} N_{a} m_{a}^{1} m_{a}^{2} n_{a}^{3} = 0$$

SM INTERSECTION NUMBERS

$$I_{ab} = 1 ; I_{ab^*} = 2$$

$$I_{ac} = -3 \; ; I_{ac^*} = -3$$

$$I_{bd} = 0 ; I_{bd^*} = -3$$

$$I_{cd} = +3 \; ; I_{cd^*} = -3$$

$$a = U(3)_{baryon}$$
 ; $b = U(2)_{left}$ $c = U(1)_{right}$; $d = U(1)_{lepton}$

$$c = U(1)_{right}$$
 ; $d = U(1)_{lepton}$

Getting JUST the SM at intersecting D6-branes

Look for choices of wrapping numbers (n_a^i,m_a^i) yielding the fermion spectrum of the SM that we displayed before:

The general solution is:

N_i	(n_i^1, m_i^1)	(n_i^2,m_i^2)	(n_i^3,m_i^3)
$N_a = 3$	$(1/\beta^1,0)$	(n_a^2,\epsiloneta^2)	$(1/ ho, - ilde{\epsilon}/2)$
$N_b = 2$	$(n_b^1,\epsilon ilde{\epsilon}eta^1)$	$(1/\beta^2,0)$	$(1, -3\rho\tilde{\epsilon}/2)$
$N_c = 1$	$(n_c^1, 3 ho\epsiloneta^1)$	$(1/\beta^2,0)$	(0, 1)
$N_d = 1$	$(1/\beta^1,0)$	$(n_d^2,\epsiloneta^2/ ho)$	$(1,3 ho ilde{\epsilon}/2)$

Table 1: D6-brane wrapping numbers giving rise to a SM spectrum. The general solutions are parametrized by two phases $\epsilon, \tilde{\epsilon}=\pm 1$, the NS background on the first two tori $\beta^i=1-b^i=1,1/2$, four integers n_a^2,n_b^1,n_c^1,n_d^2 and a parameter $\rho=1,1/3$.

Tadpole conditions satisfied if:

$$\frac{3n_a^2}{\rho\beta^1} + \frac{2n_b^1}{\beta^2} + \frac{n_d^2}{\beta^1} = 16. \tag{5}$$

U(1) symmetries

Intersection	Matter fields		Q_a	Q_b	Q_c	Q_d	Q_Y
(ab)	Q_L	(3, 2)	1	-1	0	0	1/6
(ab*)	q_L	2(3,2)	1	1	0	0	1/6
(ac)	U_R	$3(\bar{3},1)$	-1	0	1	0	-2/3
(ac*)	D_R	3(3,1)	-1	0	-1	0	1/3
(bd*)	L	3(1,2)	0	-1	0	-1	-1/2
(cd)	N_R	3(1,1)	0	0	1	-1	0
(cd*)	E_R	3(1,1)	0	0	-1	-1	1

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_d$$

These known global symmetries of the SM are in fact gauge symmetries!!

2 Two are anomaly-free:

$$\frac{Q_a}{3} - Q_d = B - L \qquad (6)$$

$$Q_c = 2I_R$$

with

$$Y = \frac{1}{2}(B - L) - I_R$$

3 Two have triangle anomalies:

$$3Q_a + Q_d ; Q_b$$

Anomalies are cancelled by a Generalized Green-Schwarz mechanism

Green-Schwarz mechanism

• If a U(1) is anomalous it is necessary massive, due to the $B \wedge F_a$ couplings:

$$\epsilon_{\mu\nu\rho\sigma} B^{\mu\nu}(\partial^{\rho} A^{\sigma}) = (\partial_{\sigma} \eta) A^{\sigma} = Higgs - like \ coupling$$

- but not the other way round.
- \bullet In above orientifold models, there are 4 D=4 RR fields involved, thus at most 4 U(1) 's can gain mass.

- ullet Even if the abelian gauge symmetry is lost, the U(1)'s remain as perturbative global symmetries (there are in general NO vevs for any charged scalar).
- There are no world-sheet instantons violating this symmetry. The RR-field couple to worldvolume of D2-branes → space-time instantons.
- ullet In our specific solutions, there are two model-independent anomalous U(1)'s, and only one U(1) remains massless:

$$Q_0 = n_c^1 (Q_a - 3Q_d) - \frac{3\tilde{\epsilon}\beta^2}{2\beta^1} (n_a^2 + 3\rho n_d^2) Q_c$$
 (7)

It coincides with standard hypercharge if:

$$n_c^1 = \frac{\tilde{\epsilon}\beta^2}{2\beta^1} (n_a^2 + 3\rho n_d^2).$$
 (8)

⇒ Just the SM group and 3 generations

Scalars at D6-brane intersections

• There are three lightest scalars ("squarks/sleptons") at each intersection with masses in string units:

$$\begin{split} M_1^2 &= \frac{1}{2}(-|\vartheta^1| + |\vartheta^2| + |\vartheta^3|) \\ M_2^2 &= \frac{1}{2}(|\vartheta^1| - |\vartheta^2| + |\vartheta^3|) \\ M_3^2 &= \frac{1}{2}(|\vartheta^1| + |\vartheta^2| - |\vartheta^3|) \end{split} \tag{9}$$

- For wide ranges of parameters scalars are non-tachyonic
- \bullet For particular choices of radi and wrappings n_a^i, m_a^i there is a massless scalar, signaling the presence of N=1 SUSY at THAT intersection
- ullet A fully N=1 SUSY toroidal brane configuration in which all intersections respect the same supersymmetry is not possible (due to RR-tadpole cancellation).
- ullet But one can obtain configurations in which all intersections respect a DIFFERENT N=1 SUSY \Rightarrow Q- SUSY models.

A SM with different SUSY at each intersection

Consider the particular subset of models with wrapping numbers

N_i	$\boxed{(n_i^1, m_i^1)}$	(n_i^2,m_i^2)	(n_i^3,m_i^3)
$N_a = 3$	(1,0)	(n_a^2, β^2)	(3, -1/2)
$N_b = 2$	$(n_b^1, 1)$	$(1/\beta^2, 0)$	(1, -1/2)
$N_c = 1$	(0,1)	$(1/\beta^2, 0)$	(0, 1)
$N_d = 1$	(1,0)	$(n_a^2, 3\beta^2)$	(1, 1/2)

and verifying

$$U^{1} = \frac{n_{b}^{1}}{2}U^{3}$$
; $U^{2} = \frac{n_{a}^{2}}{6\beta^{2}}U^{3}$ where $U^{i} = R_{2}^{i}/R_{1}^{i}$, $i = 1, 2, 3$

 One can check quarks and leptons have massless SUSY partners with respect to 4 different SUSY's:

 Interesting class of theories in which quantum corrections to scalars appear only at two loops

ullet May help in stabalizing a modest hierarchy in between the weak scale and a low string scale $M_s \propto 10-100$ Tev

Getting the chiral spectrum of the MSSM

ullet It is also possible to get a D6-brane configuration with the chiral spectrum of the MSSM and quarks, leptons and Higgs multiplets respecting the same $N=1\,{
m SUSY}$

brane type	N_i	$\boxed{ (n_i^1, m_i^1)}$	(n_i^2,m_i^2)	(n_i^3,m_i^3)
a_2	$N_a = 3$	(1,0)	(3, 1)	(3, -1/2)
b_2	$N_b = 2$	(1,1)	(1, 0)	(1,-1/2)
c_2	$N_c = 1$	(0,1)	(0, -1)	(2,0)
a_2 '	$N_d = 1$	(1,0)	(3, 1)	(3,-1/2)

Table 2: Wrapping numbers of a three generation SUSY-SM with $\mathcal{N}=1$ SUSY locally.

Intersection	Matter fields		Q_a	Q_b	Q_c	Q_d	Q_Y
ab	Q_L	(3, 2)	1	-1	0	0	1/6
ab^*	q_L	2(3,2)	1	1	0	0	1/6
ac	U_R	$3(\bar{3},1)$	-1	0	1	0	-2/3
ac^*	D_R	$3(\bar{3},1)$	-1	0	-1	0	1/3
bd	L	(1, 2)	0	-1	0	1	-1/2
bd^*	l	2(1,2)	0	1	0	1	-1/2
cd	N_R	3(1,1)	0	0	1	-1	0
cd^*	E_R	3(1,1)	0	0	-1	-1	1
bc	H	(1, 2)	0	-1	1	0	-1/2
bc^*	H	(1, 2)	0	-1	-1	0	1/2

Table 3: Chiral spectrum of the SUSY's SM obtained from the above wrapping numbers with $U^1=U^2=U^3/2$.

- \bullet The model is not fully N=1 SUSY because to cancel RR-tadpoles additional N=0 sectors (with no intersection with SM ones) have to be added.
- \bullet Due to these additional N=0 sectors the model looks somewhat like a gauge mediated SUSY-breaking model.
- There is an additional $U(1)_{B-L}$.

Higgs mechanism and brane recombination

1 Brane separation = Adjoint Higgsing Does not lower the rank.

2 Brane recombination lowers the rank

In SM the rank is lowered \to brane recombination of the branes b and $c(c^*)$ at which intersection the Higgs scalars lie.

Hierarchical Yukawa couplings

• Yukawa couplings come from triangular worldsheets

• Different distance to Higgs field gives rise to hierarchical Yukawas (Aldazabal, Franco, L.I., Rabadan, Uranga, hep-ph/0011132).

Getting $M_{Planck} >> M_{string}$

Non-SUSY models: To avoid hierarchy problem one should have $M_s \propto 1$ TeV (Arkani-Hamed,Dimopoulos, Dvali)

- **1** D6-branes The A-D-D approach for $M_{Planck} >> M_{string}$ by making transverse volume large not possible: no tori direction transverse to all D6-branes simultaneously. CY? Warping?
- **2** D5-branes Analogous intersecting models can be built yielding just the SM fermion spectrum. These are Type IIB compactified on e.g., $T^2 \times T^2 \times (T^2/Z_N)$ with D5-branes wrapping 2-cycles on $T^2 \times T^2$. In this case

$$M_{Planck} = M_{string}^2 \frac{1}{\lambda} \sqrt{V_2}$$

Gauge coupling constants

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_d$$

• Gauge couplings are not unified :

$$\frac{1}{g_i^2} = \frac{M_s^3}{(2\pi)^4 \lambda} \operatorname{Vol}(\Pi_i) \; ; \quad i = a, b, c, d \tag{10}$$

 $\operatorname{Vol}(\Pi_i)$ being the volume each D6-brane is wrapping.

- \bullet Thus, e.g., SU(3) interactions are stronger than SU(2) because 'baryonic' branes wrap less volume than 'left' branes
- There are 6 groups but only 4 couplings ⇒ There are some relationships :

$$g_a^2 = \frac{g_{QCD}^2}{6}; g_b^2 = \frac{g_L^2}{4}; \frac{1}{g_V^2} = \frac{1}{36g_a^2} + \frac{1}{4g_c^2} + \frac{1}{4g_d^2}.$$
 (11)

Do not forget that up to now nobody has constructed a string compactification in which the MSSM unification takes place!!

Minimal SUSY-SM: COUPLINGS UNIFY (within a few % error)

Is Nature cheating us? * SUN MOON Apparent Moon Size = Apparent Sun Size (few % error) **EARTH** Whoever cheats once may cheat twice!!

TeV-Scale Z' Bosons from D-branes

- ullet There is quite a generic structure of extra U(1)'s. They are NOT of E_6 type: $(B-L)~;~I_R~;~(3B+L)~;~Q_b$
- $\bullet~$ If $M_s \propto 1-10~{
 m TeV}$, could perhaps be tested at present/future accelerators
- ullet Extra Z's get masses by combining with RR string fields $B_i^{\mu
 u}$

$$U(1)_{a} \qquad U(1)_{b}$$

$$C_{i}^{a}B_{i}^{a}F_{a} \qquad C_{i}^{b}B_{i}^{a}F_{b}$$

$$M_{ab}^2 = \sum_i g_a g_b c_i^a c_i^b M_{string}^2$$

- ullet Four Eigenvalues = $(0,M_2,M_3,M_4)$. In D5, D6-brane models one finds typically at least one of them $M_3<rac{1}{3}M_{string}$
- Three massive Z's mix with SM Z^0 . One can put constraints on M_i from the ρ -parameter. (D. Ghilencea, L.I., N. Irges, F.Quevedo, hep-ph/0205083.)

Baryon and lepton number violation

- Baryon number is a gauge symmetry. So the proton is automatically stable. (Baryogenesis should take place non-perturbatively).
- Lepton number is also a gauge symmetry. But may be spontaneously broken (e.g. $\tilde{\nu}_R$ vevs.). In the first case only Dirac masses. In the second case Majorana masses of order M_{string} possible.

CONCLUSIONS

- Intersecting D-brane constructions provide for an understanding from the string theory point of view of questions like
 - chirality
 - family triplication
 - proton stability
- **2** Certain phenomena of the SM have a geometrical interpretation:
 - Hierarchical Yukawas come from the different areas of triangles connecting the Higgs with left and right fermions.
 - Different sizes of gauge couplings come from different volumes wrapped by the different branes.
 - The SM Higgs mechanism has a geometrical interpretation as brane recombination
- We have constructed classes of Intersecting D6 and D5-brane models wrapping toroidal compactifications in (orientifolded) Type II strings.
 - The minimal intersecting D-brane SM constructions are obtained from 4 stacks of branes: Baryonic, Leptonic, Left and Right.
 - Some classes of D6 and D5 brane models provide the first explicit string constructions with just the fermions of the SM and gauge group $SU(3) \times SU(2) \times U(1)_Y$.

- The SM intersection numbers are topological in character and may appear in general D-brane configurations wrapping e.g., CY-compactifications.
- ullet It is also possible to find D6-brane configurations with the chiral spectrum of the MSSM, although there is also a massive N=0 sector in these toroidal examples.
- Note that these ideas are not necessarily tied up to a low string scale scenario.

some homework...

- New configurations of Dp-branes wrapping general cycles of e.g., CY_3 and same intersection structure. (R. Blumenhagen, V. Braun, B. Körs, D. Lüst, hep-th/0206038; Angel Uranga, to appear)
- Stability of configurations. The models discussed are non-SUSY and generically have NS-tadpoles. Look for stabilized vacua (e.g. with antisymmetric tensor fluxes).
- ullet Build N=1 models (see Cvetic,Shiu, Uranga hep-th/0107143).
- ullet Phenomenology of D6 and D5 models :
 - Try to reproduce quark/lepton masses and mixings from hierarchical Yukawas.
 - Study of signatures of three 'canonical' extra Z's.

•

