Sandbox for the Blackbox

How language models learn structured data

Ashok Vardhan Makkuva
(EPFL. — Télécom Paris)

LLMs are part of daily lives

ChatGPT

The good and the bad

ChatGPT

The good and the bad

Impressive language skills Arithmetic reasoning

Programming Hallucinations

v X

Next-generation technologies

ey 3 (u,,?);y)

gt
e 7
wyl 44

Mg -

MR
i

T

|
B

But..

To realize the full potential of Al.

ey 3 (u,,?);y)

gt
e 7
wyl 44

Mg -

MR
i

T

|
B

Need of the hour

ChatGPT

Fundamental understanding

ChatGPT

Fundamental understanding

/ \

What do they learn? How do they learn?

ChatGPT

é@@ Principled frameworks and tools

/ \

What do they learn? How do they learn?

Challenges

Challenges

Inherently complex Mathematically intractable

Why complex?

Why complex?

Optimization -
Input data g Model

(loss, optimiser, hyperparams..)

. . (size, activation, normalization..)
(source, size, ordering..)

(,;)’/’ A S»z AB
0 %@\ :
(Generation

(Sampling, order, strategy...)

Why complex?

Too many tuning knobs $63M

Need a principled way to make progress

Need a principled way to make progress

LO Useful abstractions: Sandboxes

Sandboxes

Simple enough to be mathematically
tractable yet powerful enough to suggest
practical interventions

How sandboxes help?

How sandboxes help?

1. Clarity & scientific understanding.

How sandboxes help?

1. Clarity & scientific understanding.

Example: Many groundbreaking works in physics and biology: randomness in statistical physics,

Hardy-Weinberg equilibria (population genetics), Lotka-Volterra (predator-prey)

: TR A N S P T AR A A
s 3% .\3{9‘,5“%? o

(A -
NSk AR o Lo
’-f‘.{,r:'i- “ o
Lepus americanus
120 — .
=== Lynx canadensis

Thousands furs

3 4 ’
IO X
CRA 5y :
B AV ST AR AR T A

How sandboxes help?

1. Clarity & scientific understanding.

2. Diagnoses & stress tests.

How sandboxes help?

1. Clarity & scientific understanding.

2. Diagnoses & stress tests.

Hi there! Let's now do some binary addition, i.e. addition in
base 2. Do you know how to do this?

Yes, | can help you with binary addition! Binary numbers use

base 2, which means there are only two digits: 0 and 1. To add

-

11100111
+ 11011111

1110001010

/

How they succeed or fail on even the simplest arithmetic tasks

How sandboxes help?

1. Clarity & scientific understanding.

2. Diagnoses & stress tests.

Algorithm design

Input data

Sandboxes

Optimization -
> Model

(loss, optimiser, hyperparams..) , . .
(size, activation, normalization..)

@ ASZ AB
<@;a A
o=
m//,
(Generation

(Sampling, order, strategy...)

Input data

Sandboxes

Structured data

Sandboxes

Structured data

Sandboxes

Optimization

>

G-

; Z,@
\ D \\

NN

C¥0m> mo o >
\

\

\

\

o

(Generation

Model

T AB

Structured data

This tutorial

Optimization

>

Model

Goal of the tutorial

Optimization -
Structured data > Model

/ \

What do they learn? How do they learn?

Goal of the tutorial

Optimization
Structured data > Model

/ \

What can they represent? How do they learn?

Goal of the tutorial

Optimization
Structured data > Model

l l l

What can they represent? How do theylearn? How do they generalize?

Outline of the tutorial

l l l

What can they represent? How do theylearn? How do they generalize?

Partl Partll Part Il

Outline of the tutorial

Structured data

Optimization -
> Model

Outline of the tutorial

Structured data

Optimization

>

Model

Outline of the tutorial

Sequential data

Optimization

>

Model

Outline of the tutorial

Sequential data

Optimization

Markov/n-gram
Topic models

Formal languages

>

Model

Outline of the tutorial

Sequential data

Optimization

Markov/n-gram
Topic models

Formal languages

>

Model

Transformers

RNNs/SSMs (brief)

Markov/n-gram

o pOx|xy, X)) = PO X X ts s Xi1)

e.g. O-gram

NeurIPS was due to the Taylor Swift| concert.

Markov/n-gram

o pOx|xy, X)) = PO X X ts s Xi1)

e.g. O-gram

NeurIPS was due to the Taylor Swift| concert.

* Used for mechanistic understanding of language models.

induction heads attention sink
(b) Attention pattern

(s) 1
\'
t
\
n
Random Tokens Repeat of Random Tokens a
Category 40 ids node Struction Category 40 ids jnode|struction L,é
prefix of attended-to-token Attended-to-token is copied. The corresponding u

= current token l0git) is increased for the next token h | O

(s\lvtvnautuh

Outline of the tutorial

Sequential data

Optimization

Markov/n-gram

>

Model

Outline of the tutorial

f@ Sequential data

Optimization

Topic models

>

Model

Topic models

e Each word sampled following a topic.

e.g. Latent Dirichlet Allocation (LDA; Blei et al. 2003).

To generate a document:
1. Sample a topic distribution 8 ~ Dir(a).
2. For each word,

1. Sample a topic z; ~ Multinomial(0).

2. Sample a word from the topic w; ~ Multinomial(z,).

[Sontag & Roy, 2011; Awasthi & Risteski, 2015; Arora et al. 2016; Tosh et al. 2021; Luo et al., 2022, Li et al. 2023; Reuter et al. 2024]

Outline of the tutorial

Sequential data

Optimization

Topic models v/

>

Model

Outline of the tutorial

Sequential data

Optimization

Formal languages

>

Model

(Fig from Deletang et al. 2022)

Formal languages

recursively enumerable

context-sensitive
Tape-RNN
deterministic context-free
Stack-RNN
regular
RNN
finite
FFNN Transformer

counter
LSTM

infinite tape

linear tape

HEEEE

finite-state
controller

Formal languages

Regular languages: e.g. parity.

(0*1 0* 1 O*V‘ An on-off switch is off.

(actions: toggle or not)

1
Now the switch is ?.
IO PO

12
13
14
15
16
17
18
19
20
21
22
23

Formal languages

<div>
<div>
<dip>

</1i>
<1li></1i>
»</1i>
</1i>
<ful>
</div>
</div>
</div>

Context-free languages: e.g. Dyck.

§ = el[ST1](S)

Outline of the tutorial

Sequential data

Optimization

Formal languages

>

Model

Outline of the tutorial

Sequential data

Optimization

>

=

Model Q

Transformers

Transformers

In-parallel (across i) compute: x(l) = ¢(Z a(l Dy (l by,
Jj<i

*Decoder only; causal attention; omitting residual link / layer norm.

Y1 Y2 Y3 yr
t t 1 1
layer L
layer 1
i 1 i 1

X1 Xy X3 X4 Xsg X1 X2 X3 e Xt

Outline of the tutorial

Sequential data

Optimization

>

Model

Transformers v/

Outline of the tutorial

Sequential data

Optimization

>

=

Model Q

RNNs/SSMs

Recurrent Neural Nets (RNNs)

Sequentially compute: i, = f(x,, h,_;), ¥, = ¢(h,) .

Yt Y1 Y2 YT
| [! f
RNN = RNN > RNN - —> RNN
! | | !
Xt X1 X9 XT
Nonlinear: h, = (W x, + Wyh,_,) Linear: h, = Wx, + W,h,_,

* the default; e.g. ElIman RNN. * e.g. state-space models (S4, Mamba, etc)

Outline of the tutorial

Sequential data

Optimization

>

Model

RNNs/SSMs v

Outline of the tutorial

o . Optimization e
G Sequential data » Model G

l l l

What can they represent? How do theylearn? How do they generalize?

Partl Partll Part Il

\ |/
NS Ny /S
%
\\‘ 3 —
L
\
7l 8
V4 \

e . Optimization
@Y | Sequential data > | Model

_ How do theylearn? How do they generalize?

Partl

Part I: Representability

(aka. expressivity)

Part I: Representability

(aka. expressivity)

Part I - Representability

Main question: the existence of an (efficient) solution to a task.

Set of functions
by sequence models

(RNN or Transformer) ‘
Existence?
(Part I)
) SO .*
P Learning?
?
Properties: (Part II)

(Part III)

Sequence models — Recurrent Neural Net (RNN)

Sequentially compute: i, = f(x,, h,_;), ¥, = ¢(h,) .

YVt Y1

4 4

| hl
RNN — RNN

f f

Xt X1

Nonlinear: h, = s(Wx, + W)h,_;)
* the default; e.g. EIman RNN.

Y2 yr
f h f
RNN =1 RNN
1 f
X2 XT

Linear: h, = Wx, + W5h,_,

* e.g. state-space models (S4, Mamba, etc)

Sequence models — Transformer

In-parallel (across i) compute: x(l) = ¢(Z a(l Dy (l Dy,
Jj<i

*Decoder only; causal attention; omitting residual link / layer norm.

Y1 Y2 Y3 yr
t t | t
layer L
layer 1
i 1 i 1

X1 Xy X3 X4 Xsg X1 X2 X3 e Xt

Sequence models — Transformer

In-parallel (across i) compute: x(l) = ¢(Z a(l Dy (l by,
Jj<i

*Decoder only; causal attention; omitting residual link / layer norm.

. 1 1 1
1. Uniform attention: a ;= [—, —, -, —]. 2. Sparse attention: 71- = [O0,---
T T T
t tot ottt t t ottt

0

£ Ffff 1 ¢

e.g. average, sum e.g. selection

9091307...

?

R

I.

Part I - Representability

Main question: the existence of an (efficient) solution to a task.

“a prerequisite to learnability and generalization.

What type of results?

What type of representational results?

e.g. Transformer:

1. Universal approximation for seq2seq functions [Yun et al. 19].

[Yun et al. 19; informal] For any f : R*T — R%T
d a Transformer I s.t. dist(f, &) is small.

* The sizes of each layer are independent of input dim d and length T.

e The # layers is exponential ind, T.

Under practical constraints?
2. Turing completeness [Perez et al. 2020].

* Idea: simulate each step of a Turing machine’s execution.

* Assuming infinite precision, hence not practical [Dehghani et al. 18].

Yun et al. 19: Are Transformers universal approximators...?
Perez et al. 20: Attention is Turing complete

Part I - Representability

Main question: the existence of an (efficient) solution to a task.

“a prerequisite to learnability and generalization.

What type of results?

Insufficient: universal approximation, Turing completeness

Fine-grained characterization under practical constraints.

Part I - Representability

Main question: the of an (efficient) solution to a task.

*

(@) Tools for bounding the size of a solution.
* Upper bounds: “Construct a solution for..”

* Lower bounds: “Any solution needs to be as large as ..

(b) of representability:

1. Understanding design choices: depth-width tradeoff.

2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models.

Partl(a) —Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...”
* Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* A class of tasks: finite-state automata [Liu et al. 23].

* Another perspective: “Think like Transformers” — RASP (and variants) in Part III.

2. Lower bounds: “Any solution needs to be as large as...”
* Depth lower bound — circuit complexity.

* Width (& precision) lower bound — communication complexity.

Part1(a) — Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...”
e Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* A class of tasks: finite-state automata [Liu et al. 23].

* Another perspective: “Think like Transformers” — RASP (and variants).

2. Lower bounds: “Any solution needs to be as large as...”
* Depth lower bound — circuit complexity.

* Width (& precision) lower bound — communication complexity.

PartI(a), upper bound — automata

[Liu et al. 2023a]

- X

arithmetic

1 =(-1)°

-1 =(=D)

Sandbox for a class of sequential reasoning tasks

Track the exponent
with parity

0 (@) 0

Finite-state automata

Liu et al. 23a: Transformers learn shortcuts to automata

PartI(a), upper bound — automata

[Liu et al. 2023a]

Finite-state automata as a sandbox for sequential reasoning.

A = (0, 2, 0) g, = 0(6,,q,_1)
7 XN e
states inputs transitions (Qis finite)
parity counter 0 0 1-bit memory unit 1.0, 1.0,
QO = {even, odd} @ 1 @ Q= 1{h ¢} 6):/&
Z: {0,1} 1 Z: {GQ,O-Qa J—} Oa
(no-op)

Capturing a broad set of scenarios

e.g. regular languages; transitions in Markov models (Part II).

Liu et al. 23a: Transformers learn shortcuts to automata

PartI(a), upper bound — automata

[Liu et al. 2023a]

Finite-state automata as a sandbox for sequential reasoning.

A = (0, 2, 0) g, = 0(6,,q,_1)
SN o
states Inputs transitions (Qis finite)

Task: simulating &f: learn a seg2seq function for sequence length 7.
*easy for RNN: compute 0.

qi q, qr c O (states)
4 1) 4
Transformer
| | |
o, 0, or cXx!' (inputs)

Liu et al. 23a: Transformers learn shortcuts to automata

o = (0, 2, 0)

Part I(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

1. O(log T) layers for any <.

(asymptotic notations)

e O(f(T)): “No more than f(T') (up to a constant).”

o = (0, 2, 0)

Part I(a), upper bound — automata o
q: = 00y q;_1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

1. O(log T) layers for any &/: divide-and-conquer.

e Observation: simulation — function composition.

c.g. T=72: qr, = 5(0-2a 6(619 qO)) — (5(0-29 ’) © 5(619 ’))(qO) .

Shorter?
~log T

associativity

fiehrefsela=(fiof) e (f3°04)

* aka. associative scan [Blelloch 93] ... e.g. used in Mamba [Gu & Dao 23].

A =0, X, 5)

PartI(a), upper bound — automata e
4y = O\0y 4;_1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

2.0(] 0 |*log| O]) layers

e.g. parity: ML P

l

1
(21.¢) mod
e

 d

| |
21 & 3 Zy X5 K¢ K7 <3

gr=() x) mod2

t€[T] uniform attention

o = (0, 2, 0)

Part I(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

2.0(| 0 |210g | O) layers for a solvable &f: decomposition.

e [Krohn-Rhodes] Any &/ can be decomposed.
Intuition: (rough) analogy to integer factorization:

42 = 2 x 3 x 7

dependingon |Q|, | X| factors
(but not T') (2 types)

o = (Q, X, 5)

Part I(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

2.0(| 0 |210g | O) layers for a solvable &f: decomposition.

e [Krohn-Rhodes] Any &/ can be decomposed into 2 types of “factors”.

which can each be represented by one Transformer layer.

0 0 sum(z.¢) mod p 10 1.9 4
1 y OT0 b
() S - A
\ \ \ S(O',C[) = g, \ \
5(d,q) = q + o mod p i D B U L 4y 5(Lq) =q L ¢ | L

mod(-p) counter uniform attention memory unit sparse attention

o = (0, 2, 0)

Part I(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating 7T steps of sequential transitions in &.

O(log T') layers for all &f; O(|Q |210g | O|) layers for solvable &f.

Computational shortcuts: o(7') layers for T steps.
(sublinearin 7)

o = (0, 2, 0)

Part I(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

O(log T') layers for all &f; O(|Q |210g | O|) layers for solvable &f.

Solutions with fewer layers?

o = (0, 2, 0)

Part I(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

Solutions with fewer layers?

Yes, in special cases: O(1) layers.

e Commutative (e.g. parity): counting suffices — uniform attention.

) 0)
L R
* Non-commutative: a special case (i.e. gridworld). é)%i/@&»/é

Question: a hierarchy induced by Transformers? ... C-RASP (Part III)

o = (0, 2, 0)

PartI(a), upper bound — automata o
q4: = 00y ;1

[Liu et al. 2023a]

Simulating T steps of sequential transitions in <.

O(log T') layers for all <; layers for solvable &f.

Solutions with fewer layers?

No, if we allow arbitrary automaton & .

* Non-solvable: e.g. S5 (permutation of § elements)

[revisit in the lower bound part]

... O(log T) is a lower bound.

Part1(a) — Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...” \/
e Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* Aclass of tasks: finite-state automata: O(log T') and O\,((1) layers.

* Another perspective: “Think like Transformers” — RASP(-L) in Part III.

2. Lower bounds: “Any solution needs to be as large as...”

* Depth lower bound — circuit complexity.

* Width (& precision) lower bound — communication complexity.

Part1(a) — Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...”
e Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* Aclass of tasks: finite-state automata: O(log T') and O (1) layers.

* Another perspective: “Think like Transformers” — RASP(-L) in Part III.

2. Lower bounds: “Any solution needs to be as large as...”
» * Depth lower bound — circuit complexity.

* Width (& precision) lower bound — communication complexity.

PartI(a), depth lower bound — circuit complexity

[Merrill & Sabharwal 22, Hao et al. 22, Li et al. 24, Strobl et al. 24]

Why can’t we simulate every automaton with O, (1) layers?

Idea: using a (conditional) lower bound:

Ko/4 C,
* 2 classes C, C C,, differing by depth. c
2
* Some o is the hardest task in C;.
* Op((1)-layer Transtormer C C,. Transformer

strict
* Conjectured: C, € C;.

. 0)p/(1)-layer Transtormer (conjectured) cannot simulate </.

PartI(a), depth lower bound — circuit complexity

[Merrill & Sabharwal 22, Hao et al. 22, Li et al. 24, Strobl et al. 24]

Why can’t we simulate every automaton with O, (1) layers?

Idea: using a (conditional) lower bound:

* Step 1: two classes C, C C, differing by depth (and gates).

NC!
TCO log depth

const depth O(logT)

o(1)

PartI(a), depth lower bound — circuit complexity

[Merrill & Sabharwal 22, Hao et al. 22, Li et al. 24, Strobl et al. 24]

Why can’t we simulate every automaton with O, (1) layers?

Idea: using a (conditional) lower bound:

e Step 2: some </ is the hardest task in NC'.

NC!
TCo log depth
const depth O(logT)
O(1
(1) S,

(permutation)

... hon-solvable

PartI(a), depth lower bound — circuit complexity

[Merrill & Sabharwal 22, Hao et al. 22, Li et al. 24, Strobl et al. 24]

Why can’t we simulate every automaton with O, (1) layers?

Idea: using a (conditional) lower bound:

e Step 3: O(1)-layer, log-precision Transformer C TC" [Merrill & Sabharwal 22].

Intuition: the operations (e.g. add, multi) are in 7C°.

NC!
TCO log depth
const depth O(logT)
o(1)
Transformer 55

(permutation)

(assuming TC® # NC) j

Merrill & Sabharwal 22: The Parallelism Tradeoff

log-precision, const depth

—

Lower bound

PartI(a), depth lower bound — circuit complexity

[Merrill & Sabharwal 22, Hao et al. 22, Li et al. 24, Strobl et al. 24]

Why can’t we simulate every automaton with O, (1) layers?

Idea: using a (conditional) lower bound:

e Step 3: O(1)-layer, log-precision Transformer C TC" [Merrill & Sabharwal 22].

* constant-precision: CAC O[Lietal. 24]

/\ NC!

Lower parity, majority TCO log depth
bound const depth O(logT)

ACY o(1)
Transformer const depth S5
const-precision, const depth (permutation)

Li et al. 24: Chain of Thought Empowers Transformers

PartI(a), depth lower bound — circuit complexity

[Merrill & Sabharwal 22, Hao et al. 22, Li et al. 24, Strobl et al. 24]
Why can’t we simulate every automaton with O, (1) layers?

Idea: using a (conditional) lower bound.

TL;DR: O(1)-layer Transformer cannot simulate some automata.

* These (conditional) lower bounds are asymptotic (i.e. T — o0).
i.e. “can’t represent instances larger than some (unknown) threshold.”

* It’s possible that smaller instances can be represented.
— problems in practice? Part IlI.

Part1(a) — Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...”
e Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* Aclass of tasks: finite-state automata: O(log T') and O (1) layers.

* Another perspective: “Think like Transformers” — RASP(and variants) in Part III.

2. Lower bounds: “Any solution needs to be as large as...”

* Depth lower bound — circuit complexity. \/ (depth — separation)

* Width (& precision) lower bound — communication complexity.

Part1(a) — Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...”
e Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* Aclass of tasks: finite-state automata: O(log T') and O (1) layers.

* Another perspective: “Think like Transformers” — RASP(and variants) in Part III.

2. Lower bounds: “Any solution needs to be as large as...”

* Depth lower bound — circuit complexity.

» * Width (& precision) lower bound — communication complexity.

Part I(a), width lower bound — communication complexity

[Sanford et al. 23, 24, Peng et al. 24, Chen et al. 24, Arora et al. 24]

Communication complexity: a common technique for lower bounds.

[Karchmer & Wigderson 88; Ben-David et al. 02; Martens et al. 13; Vardi et al. 21]

“How many bits need to be communicated among the parties to solve a task?”

Key ideas:
1. Turn a task into a known communication problem.

2. Make the width the communication bottleneck.

Part I(a), width lower bound — communication complexity

[Sanford et al. 23, 24, Peng et al. 24, Chen et al. 24, Arora et al. 24]

Communication complexity: a common technique for lower bounds.

[Karchmer & Wigderson 88; Ben-David et al. 02; Martens et al. 13; Vardi et al. 21]

“How many bits need to be communicated among the parties to solve a task?”

A known problem: e.g. set disjointness (2-party):

DISIAS,T) :=1[SNT = @], S.T € {0,1}"

e n=4: Alice: § = I | Bob: 7= I] DIsy¥s, 7) =0.

e Known lower bound [Yao 1979]: DISJ"(S, T') requires 7 bits.

Part I(a), width lower bound — communication complexity

[Sanford et al. 23, 24, Peng et al. 24, Chen et al. 24, Arora et al. 24]

2. An efficient communication protocol ... info to be sent for computing f.

* Make the size of interest the communication bottleneck.

Part I(a), width lower bound — communication complexity

[Sanford et al. 23, 24, Peng et al. 24, Chen et al. 24, Arora et al. 24]

Min size for a new task: reduction + communication protocol (bottleneck).

* RNN: the two parties = first vs second half of the positions.

hy hy — hiy hy
X1 X Xit1 AT
Alice Bob

hiv1 =15 xi41)

— Lower bound on the size of /1, i.e. width - precision (e.g. T for DISJ').

Part I(a), width lower bound — communication complexity

[Sanford et al. 23, 24, Peng et al. 24, Chen et al. 24, Arora et al. 24]

Min size for a new task: reduction + communication protocol (bottleneck).

* Transformer: the two parties = some positions vs the rest.

X1 u%) X Xit1 AT
Alice Bob
[« exp((QGp). Ky
7)> BX;
R ” = . V .)= - Vx.
ecdir: yr ¢(jSZTaT,] X]) ¢ \]SZT zi eXp((Q(XT),K(xi)> .X] }

bottleneck

Part I(a), width lower bound — communication complexity

[Sanford et al. 23, 24, Peng et al. 24, Chen et al. 24, Arora et al. 24]

Min size for a new task: reduction + communication protocol (bottleneck).

* Transformer: the two parties = some positions vs the rest.

X1 Xy oo X; X1 cee X,
Alice Bob
Z exp((Q(x,), K(x;))) - V(x;) + Qx,) e Rwidth
Bob's i
Z eXP((Q(xn)’K(xi») + Q(x,) cR
Bob's i

— Lower bound on the size of O(x,), V(x;), i.e. width - precision (e.g. 7" for DISJY).

Part1(a) — Tools

Model size needed to solve a task?

1. Upper bounds: “Construct a solution to do some task...”
e Case-by-case: parity, Dyck [Hahn 20, Yao et al. 21].
* Aclass of tasks: finite-state automata: O(log T') and O (1) layers.

* Another perspective: “Think like Transformers” — RASP(and variants) in Part III.

2. Lower bounds: “Any solution needs to be as large as...”

* Depth lower bound — circuit complexity.

* Width (& precision) lower bound — communication complexity. \/
(size < bottleneck)

Part I - Representability

Main question: the of an (efficient) solution to a task.

*

a

(@) Tools for bounding the size of a solution. \/
* Upper bounds: “Construct a solution for..”

* Lower bounds: “Any solution needs to be as large as ...

(b) of representability:
1. Understanding design choices: depth-width tradeoff.
2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models.

Part I - Representability

(b) Implications of representability:
1. Understanding design choices: depth-width tradeofft.
2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models.

Part I(b), implication: depth-width tradeoff

[Sanford et al. 24, Bietti et al. 23, Zhang et al. 23]

Induction head [Elhage et al. 21, Olsson et al. 22]: a conditional copying task.

.AB..A—>B

[Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive] [,]
... [they] [just] [didn] ['t] [hold] [with] [such] [nonsense] [.] [Mr] [Durs] [???].

* Ubiquitous and important: e.g. in-context learning.
Sanford et al. 24: 1-layer transformers fail to solve induction head

Bietti et al. 23: Birth of a Transformer
Zhang et al. 23: Unveiling transformers with lego

Part I(b), implication: depth-width tradeoff

[Sanford et al. 24, Bietti et al. 23, Zhang et al. 23]

Induction head [Elhage et al. 21, Olsson et al. 22]: a conditional copying task.

¥~ N\

.AB.A—>B
\A

* 2 layers suffice [Bietti et al. 23, Zhang et al. 23, Liu et al. 23b].

* Length-T input: #heads 7 = O(1), width m = O(1), precision p = O(log T').

B
P
/ Layer 2: find (k, g) match
=
(...,A) (A,B) (...,A)
52}
Layer 1: move prev. token's
key (+ use "skip connection")
7
A B A Input to induction head

Position j Positionj + 1 Position i

Part I(b), implication: depth-width tradeoff

[Sanford et al. 24, Bietti et al. 23, Zhang et al. 23]

Induction head [Elhage et al. 21, Olsson et al. 22]: a conditional copying task.

¥~ N\
.AB..A—>B
\A

What about 1-layer? 1fewer layer — more parameters: Hmp = Q(T) [Sanford et al. 24].

Proof using communication complexity:
* Reduce a communication problem (e.g. INDEX) to induction head.

* Design the protocol: sending the key & value vectors.

Sanford et al. 24: 1-layer transformers fail to solve induction head

Part I(b), implication: depth-width tradeoff

Benefit of depth?

* Parameter efficiency (communication complexity; e.g. induction head)

* Representational power (circuit complexity; e.g. Ss).

Also for looped Transformers [Dehghani et al. 18, Yang et al. 23, Merrill et al. 24].

Part I(b), implication: depth-width tradeoff

Benefit of depth?

* Parameter efficiency (communication complexity; e.g. induction head)

* Representational power (circuit complexity; e.g. Ss).

Also for looped Transformers [Dehghani et al. 18, Yang et al. 23, Merrill et al. 24].

Other complexity notions?

* separation rank [Levine et al. 20].

* formal logic [Chiang et al. 23, Barcelé et al. 24].
“** C-RASP [Yang et al. 24]

Part I - Representability

(b) Implications of representability:
1. Understanding design choices: depth-width tradeofft. \/
2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models.

Part I(b), implication: comparison

A > B:1) a lower bound for B; 2) a (more efficient) construction of A.

Transformer > RNN: RNN is bottlenecked by the hidden state size.

e e.g.retrieval / copying / associative recall / (k-hop) induction head.

[Arora et al. 24; Bhattamishra et al. 24; Jelassi et al. 24; Sanford et al. 24; Wen et al. 24]

RNN > (limited depth) Transformer: insufficient “effective depth”.

* e.g. S5, bounded Dyck [Merrill & Sabharwal 22, Liu et al. 23, Bhattamishra et al. 24]).

Efficient models?

e.g. subquadratic Transformers [Alman & Yu 24]; SSMs [Sarrof et al. 2024, Grazzi et al. 2024].

Part I(b), implication: comparison

A > B:1) a lower bound for B; 2) a (more efficient) construction of A.

Transformer > RNN: RNN is bottlenecked by the hidden state size.

e e.g.retrieval / copying / associative recall / (k-hop) induction head.

[Arora et al. 24; Bhattamishra et al. 24; Jelassi et al. 24; Sanford et al. 24; Wen et al. 24]

RNN > (limited depth) Transformer: insufficient “effective depth”.

* e.g. S5, bounded Dyck [Merrill & Sabharwal 22, Liu et al. 23, Bhattamishra et al. 24]).

Efficient models?

e.g. subquadratic Transformers [Alman & Yu 24]; SSMs [Sarrof et al. 2024, Grazzi et al. 2024].

Albert Gu’s blog: https:/goombalab.github.io/blog/2025/tradeoffs/

Part I - Representability

(b) Implications of representability:
1. Understanding design choices: depth-width tradeofft.

2. Comparing Transformers vs RNNs (SSMs). \/

3. Improving with Chain-of-Thought and hybrid models.

Part I(b), implication: improvement

Transformers RNNs/SSMs
* Representational advantages * Representational limitations.
(param. efﬁciency over RNN/GNN) (eg COpying; parity)

[Jelassi et al. 24, Arora et al. 24,

. . o
Representational limitations Sarrof et al. 24, Grazzi et al. 24]

— (1) Chain of Thought

[Feng et al. 23; Malach 23, Merrill et al. 23, Li et al. 24]

e Quadratic cost * Linear cost
(memory & compute) (memory & compute)

— (2) Hybrid

Combining RNN + Transformer layers [Wen et al. 24]

Part I(b), implication: improvement

Standard Prompting

~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

_J

A: The answer is 27. x

Chain of Thought (Wei et al. 22): solving a task step-by-step.

Chain-of-Thought Prompting

~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

_

 Mossoum

A:

_J
~

The

Cnswer is9. J

Part I(b), implication: improvement

Chain of Thought (Wei et al. 22): solving a task step-by-step.

Empirically Theoretically
[Feng et al. 23; Malach 23; Merrill et al. 23; Li et al. 24]

100 |
= Huee boost! (Informal) Circuits of M gates can be
) 0T HBEDOOSE simulated by O(M) steps of CoT.
) B 57
2 60 (’
=
2 407 Idea: simulating 1 gate with O(1) steps:
3 20| 18
* Attention to collect inputs.
0

Math Word Problems (GSM8K) * MLP to compute the gate.

Part I(b), implication: improvement

[Wei et al. 22; Feng et al. 23; Malach 23; Merrill et al. 23; Li et al. 24]

Increasing power via 1) more depth or 2) more CoT steps?

1. # sequential steps? ... depth “wins”.

e.g. graph connectivity [Merrill & Sabharwal 24]:

O(log T) depthv, O(logT) CoT X

2. “Uniformity” (~ same construction for different 7)? ... tied.

Implication for length generalization: yes for both (log precision).

(more in Part III)

Merrill & Sabharwal et al. 24: A little depth goes a long way

Part I(b), implication: improvement
[Wen et al. 2024]

How about improving RNNs?

* CoT is not sufficient: the memory constraint remains.

Hybrid: 1attention layer.suffices. — low memory footprint, high quality.

* e.g. Jamba [Lieber et al. 24]:

O L1 ;—‘] i Transformer:Mamba = 1:7

—~ Y . ¥ Y . v | Efficient alternatives to attention?
' ' ... quality & efficiency tradeoff

e.g. sliding window attn [Ren et al. 24]

* conv layers in S4/Mamba?

Wen et al. 24: RNNs are not Transformers (Yet)

Part I - Representability

(b) Implications of representability:
1. Understanding design choices: depth-width tradeofft.
2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models. /
(or depth?) (efficiency + performance)

Part I - Representability

Main question: the existence of an (efficient) solution to a task.

“a prerequisite to learnability and generalization.

(@) Tools for bounding the size of a solution.
* Upper bounds (“Construct a solution for ...”): finite-state automata.

* Lower bounds (“Any solution needs to be ...”): communication/circuit.

(b) Implications of representability:
1. Understanding design choices: depth-width tradeofft.
2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models.

Sandbox for the Blackbox

How language models learn structured data

Ashok Vardhan Makkuva
(EPFL. — Télécom Paris)

3@ Sequential data

Recap

Optimization

l

What can they represent? How do they learn?

Partl

l

Partcll

>

Model

AN /
=
e

l

How do they generalize?

Part Il

Recap

l

What can they represent?

Partl

Part I: Representability

(aka. expressivity)

Partl-Recap

Main question: the existence of an (efficient) solution to a task.

Set of functions
by sequence models

(RNN or Transformer)

Existence?
(Part])

Partl-Recap

Main question: the existence of an (efficient) solution to a task.

“a prerequisite to learnability and generalization.

(@) Tools for bounding the size of a solution.
* Upper bounds (“Construct a solution for ...”): finite-state automata.

* Lower bounds (“Any solution needs to be ...”): communication/circuit.

(b) Implications of representability:
1. Understanding design choices: depth-width tradeofft.
2. Comparing Transformers vs RNNs (SSMs).

3. Improving with Chain-of-Thought and hybrid models.

Partl-Recap

Main question: the existence of an (efficient) solution to a task.

Set of functions
by sequence models

(RNN or Transformer) ‘
Existence?
(Part I)
) SO .*
Lo T Learning?
?
Properties: (Part II)

(Part III)

Today

Optimization
Sequential data » | Model

l

How do they learn?

Partll

Markov/n-gram
Topic models

Factual recall Transformers

l

How do they learn?

Markov/n-gram
Topic models

Factual recall Transformers

l

How do they learn?

Optimization landscape

Learning dynamics

Markov Transformers

l

How do they learn?

[Makkuva et al. 2024, Makkuva et al. 2024, Nichani et al. 2024, Bietti et al. 2023, Guo et al.
2024, Chen et al. 2024, Edelman et al. 2024, Rajaraman et al. 2024, Ekbote et al. 2025]

Why Markovian?

Hindi
Mandarin .Q DUtCh

: & Bengali& EPO'IS
Portuguese

Japanesez Arabl
I;I%n\%tl;aﬂnfg?ean Ia nguage ussianitalian 8 <&

—_ _,,._.Hunganan
N Kogﬁgﬂ: >-mpor,dtuu Bese Persian &
S Spanishf s, =
m Cantonese

- Ku"“*"Hunganan
s ‘“

=
e § nghSh
Ew

nglish

Shannon, 1948

German

panishSwedlsh

Mandarin seerish
ANESE yipanece €= O .

——|h

reek language @2 un§

O =-E
Norwegian

gese
¢ Russian

etnamese Turkish
g2

m;U Portu

Markovian

Grammar

Blue

Syntax Black

> Bl Black Blue \

Markov Transformers

Recipe

e Find the structure in the solutions learnt by gradient-based methods

* Reparametrize the transformer parameters using this structure

e Go with the flow! (or GD)

Markovian inputs

Transformer

Outline

[Makkuva et al. 2024, Makkuva et al. 2024]

Outline

Memory = 1 Depth = 2

[Nichani et al. 2024, Bietti et al. 2023, Edelman et al. 2024]

Outline

Memory = £ Depth

[Rajaraman et al. 2024, Chen et al. 2024, Ekbote et al. 2025]

[Makkuva et al. 2024, Makkuva et al. 2024]

Key Takeaways

Single-layer transformers sometimes fail

to learn even first-order Markov chains!

Markovian switching and initialization

play a key role in the learning dynamics

Markovian inputs

First-order Markov chain (Global)

First-order Markov chain

First-order Markov chain

v

.} Markovian inputs

Transformers

Transformers

| Vaswani et. al., 2017]

Single-layer Transformer

1 t t
o) o) o)
t f f
logit, logit,, logit y
Linear Linear Linear
z1 Zn ZN
FF FF FF
f f f
yl yn yN
| | |
Attention
L1 Ln LN
Embedding | | Embedding Embedding
i i i
L1 Ln LN

Single-layer Transformer

o(71) o(27) fa(z1)
t t 1
o) o) ()
T T :
logit, logit,, logit 5
Linear Linear Linear
<1 Zn ZN
FF FF FF
T T :
Y Yn Yn
l l l
Attention
1 T, LN
Embedding | | Embedding Embedding
f f 1
T T rn € {0,1}

Single-layer Transformer

o(77) fo(aT) fa(x1)
t t t
o() o() o ()
f f 2
logit, logit,, logit 5
Linear Linear Linear
Z1 Zn ZN
FF FF FF
f f 2
Y1 Yn YN
l l l
Attention
L1 Ln LN
Embedding | | Embedding Embedding
f f f
T T rn € {0,1}

Single-layer Transformer

o(71) o(27) fa(z1)
t t 1
o) o) ()
T T :
logit, logit,, logit 5
Linear Linear Linear
<1 Zn ZN
FF FF FF
T T :
Y Yn Yn
l l l
Attention
1 T, LN
Embedding | | Embedding Embedding
f f 1
T T rn € {0,1}

Linear

=]

Embedding

Weight tying

o(71) o(27) fa(z1)
t t 1
o) o) ()
T T :
logit, logit,, logit 5
Linear Linear Linear
Z1 Zn ZN
FF FF FF
T T :
Y Yn Yn
l l l
Attention
1 T, LN
Embedding | | Embedding Embedding
f f 1
T T rn € {0,1}

No Weight tying

a(xr) - fela?) - fa(x)
1 1 t
o) 10 ()
t t s
logit, o logit,, --- logit 5
Llnear Linear Linear Linear
<1 S Zn ce ZN
FF FF FF
t t s
Yq . Y., . YN
Attention
I SR 9 P ce TN
Emb O ddln g Embedding | | Embedding Embedding
i i 1

Single-layer Transformer

fo(z1) o(z7) o(21)
t t t
o(:) o(:) o(-)
t « t
logit, logit,, logit »
Linear Linear Linear
Z1 Z'n, ZN
FF FF FF
f x f
Y1 Yn YN
Attention
L1 Ln LN
Embedding | | Embedding Embedding
f f f
T T rn € 40,1}

First-order Markov chain + Single-layer transformer

fo(z1) fo () fa(z?)
t t 1
o) o) o)
f f f
logit; --- logit,, logit 5,
P Linear Linear Linear
1 t t
21 zn zN
1—p @ c 1 —q FF FF FF
f 8 s
yl yn yN
q Attention
\l/ ml . o mn P :DN
Embedding Embedding Embedding
(2n) i i i
n/n>1 . xn - zne{0,1}

Input: First-order Markov chain Model: Depth =1

Next-token prediction loss

Next-token Prediction Loss

N
L(0) =~ By [ran - 1o fo(a]) + (1~ 2011) - log(1 — fo(al))

Cross-entropy loss between x,,+1 and prediction probability fg(27)

Ideally...

Prediction probability Ist-order Markov kernel

NS

fo(r7) =~ P(xny = 1] 2n)

But...

But...

Single-layer transformers sometimes fail

to learn even first-order Markov chains! *

Gets stuck atlocal minima!

5

N\

Escapessaddle

weight-tying

weight-tying

all p, q

global minima

weight-tying

27) = Plwnss = 1)

p+qg>1

bad local-minima

Interestingly...

no weight-tying

fo.(27) = P(znt1 = 1)

-~/

p+qg>1
saddle point

Theoretical results

Theoretical Results

Bad local minima (weight tying)

If p + ¢ > 1 and the weights are tied, there exists a 0, with explicit construction
such that:

(i) 8 is a bad local minima for L(-) with L(6,) > L(0.)

(ii) fo. (x7) = P(xpo1 = 1), the marginal distribution

(iii) L(0-) = H(m), the entropy of the stationary distribution
(iv) V

iv) VL(0,) =0, i.e. O is a stationary point

Theoretical Results

Saddle point (no weight tying)

Under the same setting as above with the weights not tied,

0 . becomes a saddle point. It satisfies the same properties.

Theoretical Results

Bad local minima (weight tying)

If p + ¢ > 1 and the weights are tied, there exists a 0, with explicit construction

such that:
(i) 8 is a bad local minima for L(-) with L(6,) > L(0.)
_(zV) = P(x,4+1 = 1), the marginal distribution

(ii) fo,. (=
(iii) L(0r) = H (), the entropy of the stationary distribution
(iv) V

iv) VL(0,) =0, i.e. O is a stationary point

Saddle point (no weight tying)

Under the same setting as above with the weights not tied,

0 . becomes a saddle point. It satisfies the same properties.

Intuition

o(21) o(zT7) o(21')
t t t
o(:) o(:) o(:)
.................. Frerte e T e,
logit, logit,, logit
Linear Linear Linear
Z1 Zn ZN
FF FF FF
f f f
Y1 Yn YN
I I I
Attention
1 T, LN
Embedding | | Embedding Embedding
f f f
T T rn € {0,1}

Intuition

weight-tying

Hessian is (almost) positive-definite

no weight-tying

Hessian is indefinite

Main Results

weight-tying

no weight-tying

p+qg>1

bad local-minima

saddle point
0

>

Test loss L

0.80

0.75

0.70

0.65

Weight tying

— With weight-tying
— = Entropy rate

-+=» Entropy of stationary distribution

Gets stuck at local minima!

|

20 40 60 80 100
Iteration

Test loss L

Without Weight tying

0.80
— Without weight-tying
— With weight-tying
0.75 = = Entropy rate
-=«+ Entropy of stationary distribution
0.70 o
Converges to global minima
0.65
0.60

0 20 40 60 80 100

Iteration

weight-tying

no weight-tying

fo.(z7) =P(zy 1 =
p+qg>1

bad local-minima

saddle point
0

>

Markovian inputs » Transformers

/

Optimization landscape

v

Markovian inputs » Transformers

N\

Learning dynamics

Markovian inputs » Transformers +

N\

Learning dynamics

|—° Gradient-tflow

Gradient Flow

Gradient Flow

da,
dt

—VL(6,)

Gradient Flow

Transformer parameters

/

a6
Tt _ VI8,

dt N

Next-token prediction loss

Recall

o(71) o(27) fa(z1)
t t 1
o) o) ()
T T :
logit, logit,, logit 5
Linear Linear Linear
Z1 Zn ZN
FF FF FF
T T :
Y Yn Yn
l l l
Attention
1 T, LN
Embedding | | Embedding Embedding
f f 1
T T rn € {0,1}

Low-rank Structure

Yo =Tn + Wo Z atty,i - Wy,
: i=1

Reparametrization

w
[)
\. y

--

Reparametrization

--

Gradient Flow

de
d—tt — —VL(Ht), Ht — (et,wt,at) - RS

do
d—tt — —VL(Ht), Ht — (et,wt,at) - RS

\—oa:()—>9:(e,w)

p+q<1

11

-7 -5 -3 -11

-9

— — Global minima

—4— Local minima

— 7 z - T -

©
£ m,uwﬁu
X-m B S —
ap/rhlff
& m,&fr
< O
S o
O @®
g un
T

"\ N

b A

t 4t

.

1’ 7

{7/

Yy A,/

v A7

AT Z 7w v S

= S
—_ -
—

_ | & o S
|

AL
#\V\\\\ IS

Piuf\\\\\\\‘

\v\v\uv\\\\\\ :
el 2

~—— s NN NN N

— A R .

p+q<1

SR SRS

~ ~— S —

AN NN

L. . . N

f o w s AN S S A
f o\ s AS A A S
S xS AY S S S

SR S S S S TS

NXNXNXNNXXXXNXYXXNNXYNXN
NXNRXRXNXXXXXXYXXNNXNXN
NN NNXNXNXXNXNYXXXN

AR N

1,

e

\

—

“\

v
>

P{/////////////

N 4

N -
7
4
AN

|

Y SN

3

NN NN R S s
NONON N NN N S s

N
N\
NN

NNNN NN

NN N N N N s

VA A5 a4

A A5 22 S

y /7
4
1

7

VY85 8 4

2

-3

Gaussian init. converges to global minima

p+q<1

3

////////r/rlrlrhnlf B I e 17777
S IR I g A 2 LSS
NN NN N N \\\\\\\\\\
R R \\\\\\\\\\
NN NN N N Y \MMM vy
NN N NN Y 12707
NN N NN A A
/4fU/////ﬁ LA A AN A A AN
A //”. K ¥/ /4 AF A A AN
AR R Yy
////% AV A A A
////N = AV A A AN
P/// W\\\\
NN 2
/\/\,v?///// T PN
RN A (il
-ttt t—t SRR
:‘\\N” {1 L A S B
R A A - S
A B A B Y A SO
12V SN n
\\\\\\V\W NN NN NN
A AN NN NN XN NN
\\\\\\\\ T
VA AW A 4 A A AT RN
0 g ~ X X X AU N
7 /7 AV 7 4////////
g o gl ~ <X X XX N XN N
~ N %R AN AN
N — N m

p+q>1

—2

NN N N N YN NN N s iy PV P S A,
NN N NN N NN S s s il A AV 1 IV A A A A
NN N S N S ™ S s il A AV AW A A e
NN N NN NN Y™™ R A AV 1 A A"
NN N\ AN N Dl -~ A A 4 y ¥ /S
NANNANNNNNE NSNS e AL /S AN
NNNNNNNNENSI =TT S m e AL L LS A A A A S
///////I////rlvlv Ce AL A A A AN
NNNANNNNNNNNSNSgrc e Al s S A AS A A AN
NN N\ N V4 ;S 4 A
NN NN NN K ' A AA A A A
NN NN y ' A AA A A A
NN NN L A ASY A A AN
NN N N AV 1V AV AV ayay
NN NN NN ™ « v LAY LA SN
VLV NV NN A A A AN AT
b Vo e,
] A k««kdhff+
R XY NN R
RN e MW NN AN
11 F &l NN N AN
\\\Tw\\\\\ NN XN NN NN NN
/ 1/ A A~ LA\ NN NN
VAV AV A A B A A &5 4 NN XN XNNXYXNXNNXNNN
VAW AV A A" AV AV A & ¢ N~ X XNNXNXXXNXNN
VAV AV AV A BV AP 4% &% ¢ ~XN XX NXNXXNXNXN
VAV AV AV AV A 5 4 & ¢ ~<XXXXXNXNXN
VAY.AD.A.4 Z F F LA UL AN x X XX
N — o —

-3

!

mnima

Gets stuck atlocal m

p+q>1

+—
QO
m
NN N N N NN NN C e\ NS A
NANNNNNNNNN S Ar v Ay v /7 A
NONN NN NN NN c o AS S A AN
NNNNNNNNNNSw— v AS S S A
NN A NSNS s ===7=7zr7z7z727777 4 N
NNNNNNNNEO NS cmm A s s NS A A A
////////m//r/r/rlvlv T AS A A AN
///////Z////rlrlv CHe A A A A AN
NNNNNNNNNSTEGEmc s AL A A AS A A AN
NN\ NN SS< <=~~~ 7Z 27 777 A7/ 77 7 A
VNN NN Ll AL A A A AAS A A AN
NN NN ™~ cHe s A A A ANS A A AN
NN N NN AT A A A AS A A AN
NN NN g T\ A S YA
R] T O P EES—. e O
NN NN NN s C e o e AS S A A
VANNNNNNNNNNYSIT™Y s A/ /4 40 T
L R A -
|++LQL BEEEREEES BARE .k(««<rfff+éll
WENE NN EEASS RN R D Y
NENE Ny S BN W N R
NN RS Sl BN\ SN AR
\\%¢\\\\\X\\\ e L AN NN NN
.. \\\\\\\H\.14u “lﬂf///////////lz
\\\\\\\\\\X\\i J//%/////////// _
\\\\\\\\\\\uﬁ‘k\A\ IYIV*N////////////
o — o — oV m

Initialize here

2

Canwe escape

NN N NN NSNS s\ Al S XA
NN N NN N N N s e Al S S S A
A N N A As s S
NN N NN N N N S e s e e ANY A A AN
NN S NSNS SSSSsSs==~~===77zrr727777 4 N
NN NN NNNNES === oA A A A AN
NNNNNNNNE RS s — o c e sy Ay S S A
///////I////(lv o\ A AN A A AN
NNNNNNNNNNNS g ANl S S AL A A AN
NN NSNS SKSSs=~~===F77 777477774
ANNNANNNNNNNSNS e A A A AT
NN NN N NN NN N e s caoe AL AAANSA A
NNNNNNNNNNSNSS=— e Ay Al A A AN
T N O N i s AS S S S
NNNNNNNSNSN s> B A sy /7 A
\ R NN FEAANSAAA AN NN
\ e] CANN GG S
T [RS //,,..,,,V‘\f++4ul
I TR aAAA ARNN N I
R RN %A RN AR R
Pty s PRI RN vy
\\\l\\\\\w\\\if e I NN NNNNNANN
L L L LY A A x| N e N NN NN NN YN
A2 S Gt S EONNNN NN _
A A d o W e S A S AR A R R
VA AV A A AV ar v d asd Tapun Suugey LA N S SANA AR R R
VA AV A AV A v 4" Fa "S Iauge B NE N N NA AN AR RS
L s sy - o] 1 4 PN E Q_J
o — o — o m

ion

1zat
ion

itiali

Nl

—— Standard
— Our

0.90

t

liza

Ia

in
=== Unigram loss
-=-==+ Bigram loss

0.85
0.80

SSO| 1S9

0.70

0.65

0.60

200 300 400 500 600
lteration

00

1

|l J m
a NN N N NN SN i e A AV 1WA AAyey
NN NN N N NN NS I e A AV WA A
NN AN Y s Dl A A 4 I 2 A A |
oy A R N N T N N N iy e gy VA A A,
n NN S AN S SsSSESss=—~~====Zz7z7zr7 A7 777 A N
° NANNANNNNNE NSNS g c e A sl AL S S A
m NNNNNNNNSNS == cra s s S NS A A A
NNNNNNNRGNNRN ST cr e Al s S S AL A A A
NANNANNNNNNNSNSN g c e A S A A A A
la NN AN A\ N NSNS~~~ 7777 A7/ 7/ 7/ 7 A
NNNNNNSNNSNNSNS e Ay A A A
@) VANNNNNNSNSNNSS~=g— e A vy Ayt /7
O NNNNNNNNNNNSNSSI e A s S A A S AN
y— i el e D S AT RPN
- NANASANSNSNSNSTS AT Ay S
3 U RN NENNNES — 2 A R AR
(R T N P VO WV Y~/ A AN Y A Y O Y A
k -++LI¢L;$««‘\\\\ //,,,««k,_*\,*\f‘r)r.ﬁl
e L LA A RN RN T R
- Rl % A SRR N A R
P&l s AT IO vy
- N - ~ A
S \\\ix\\\\x\\‘\ L AN N NN N NN
.. \\\\\\\H\;W«u ‘Jrlﬂf///////////lz
m ww\\\\\\\\vm\\k Jl,m/////////// _
\\\\\\\\\n#n\Al lYIY.\NIA///////////
Y Y A T SR S N N RN NN NN
VAV AV AN A" AV 4V 4 45 4V 252 VS N~~~ X XX XXX N
mM o — o _|__ J_ JJ
g
. ™M
m ///////////Mf #J__a\;\\\\\\\\\\\\
° pmnt NONN N NN NN Sy - TR e A2 S S AN
n NN NN N S S T RN A A XSS S
NNNNN NSNS XN A A sy S
© yuu AW "W WA U U N S SN &N*\\\\\\\\\\\\uz
m //////////%nlff lv\\u/\\\\\\\\\\\
///////MMWNHHH HHHMMM\\\\\\\\
y— AR R AN e ¥ S A AN AA AN
a ////////\/A/ffrk N AN RN
BARLRRR N S S A
b ANANN NN DT T x\\\\\y SAAAA AN
- VAN I I DI O A
////,V/ \K /AN
=l TN o TR
- 2 S IR Ny \\\\\\\\\wvw\r%\\
- BEEER R AR I I I A A
bttt [N I A (S A 7\ WL W W N S L N O RO B B
S ‘»\\‘\TNJ\\\\ SN N W . . W O U OO O O O I
Q NNy RN aavaaa vy |
g trr P SR NN\ V. U U U VO U UL O O
VA A A A A A/ ¢ A ~ N NN XN N NN NN NN
Y Y R A7 Pl NN I\ NN N
Y WA DS S S S WU R
> PRI VZEPIr - S NN NN
\\\\\\\\\\I\w\vlv —_— NN XXX NXXNXNXN
O A I AN A A S R S N N A N NS A
\\\\\1\1\1\1“ "4!’.4///4/4/_4/4/4// ﬂ<_u
C ™M o~ — o — o~ ™M

p+qg>1

p+qg<l1

p+qg>1

p+qg<l1

m Global minima mLocal minima = Ball around origin

Markovian inputs » Transformers

N\

Learning dynamics

v

.} Markovian inputs » Transformers +

/ N\

Optimization landscape Learning dynamics

v v

Key Takeaways

Single-layer transformers sometimes fail

to learn even first-order Markov chains!

Markovian switching and initialization

play a key role in the learning dynamics

Memory = 1 Depth = 2

[Nichani et al. 2024, Bietti et al. 2023, Chen et al. 2024]

Key Takeaways

In-context learning (ICL) emerges!

Depth plays a critical role in transformer

functionality

ICL — Induction Heads

Mr and Mrs Dursley, of number four, Privet Drive, were
proud to say that they were perfectly normal, thank you
very much. They were the last people you'd expect to be
involved in anything strange or mysterious, because they
just didn't hold with such nonsense. Mr Dursley was the
director of a firm called Grunnings, which made drills. He
was a big, beefy man with hardly any neck, although he
did have a very large moustache. Mrs Durs____

[Olsson et al. 2022]

Induction Head for Markov inputs

Inmput: 0 1. 2 0 3 0 1 3 --- 0 1
~——
match final

Uniform b symbols

distribution

Induction Head for kth-order Markov

Input: 0 1 2 0 3 0 1 3 0 1 (k:2)
~——
match final
Uniform b symbols

distribution

Main idea: Use historical tokens of same context as x4 to predict 41

Induction Head for kth-order Markov

In-context estimator:

A Z$:k+1 H(CI}Z — L, Lj—1 — Lty.eeo s Lj—k = CCt—k—l—l)

| | Zz_—k | H(Ii—l xn; © e ey Lj—k xt—kﬁ—l—l)
I

Induction Head for kth-order Markov

In-context estimator: .
Context-matching

A Zgzlﬁ_l H(xz — 377(3375—1 — Lty -5 Li—k = xt—k—l—l)

| | Zz_—k | I[('CC’I:—l xna © .o 733’1:—]{ xt—k—l—l)
I

How do Transformers implement Induction Heads?

How do Transformers implement Induction Heads?

O Markovian inputs » Transformers :@

Memory = 1 Depth = 2

[Nichani et al. 2024, Bietti et al. 2023, Chen et al. 2024]

Induction Heads via Two-layer Transformers

Second-layer does pattern matching and prediction

/ Layer 2: find (k, g) match
=
— Layer 1: move prev. token's
key (+ use " ")

Input to induction head

Position j Positionj + 1 Position i

First-layer copies the previous token

How do Transformers learn Induction Heads?

O Markovian inputs » Transformers :@

Memory = 1 Depth = 2

[Nichani et al. 2024, Bietti et al. 2023, Chen et al. 2024]

In-context Markov chains

Memory = 1

In-context Markov chains

in-context Markov chain

To generate each sequence:

p Sample a probability transition matrix or kernel 7 from some prior (e.g. Dirichlet)
p Sample s, from its stationary measure

p Fori=1,...,T— l:samples; ; ~ n(- |s,)

In-context Markov chains

in-context Markov chain

To generate each sequence:

* Sample a probability transition matrix or transition kernel 7 from some prior (e.g. Dirichlet)

* Sample s; from its stationary measure

* Fori=1,...,T— l:sample s;, | ~ z(-|s,)

Natural Estimator: compute the empirical transition counts in-context

#s — s’ transitions in the sequence

D(s’|s) =
PsLs) #s in the sequence

In-context Markov chains \/

Memory = 1

Transformers 3@

Depth = 2

The Disentangled Transformer

The Disentangled Transformer

1. Use one-hot token+positional embeddings
2. Replace linear projections with concatenation

[similar model considered in Friedman et al. 2023, Learning Transformer Programs]

The Disentangled Transformer

1. Use one-hot token+positional embeddings
2. Replace linear projections with concatenation

X = [\onehot(si)l | Pnehot(i)J Theorem:
toEen posﬁion
Fori=1,...,L: Transformers with H heads and L
x; < [x;, attn(X),] layers have the same expressive

power as disentangled

St WO X transformers with H heads and L

The Disentangled Transformer

1. Use one-hot token+positional embeddings
2. Replace linear projections with concatenation

Completely impractical: the embedding dimension doubles at every step

weights are directly interpretable

easier to reason about the flow of information through the model

useful tool for theory and mechanistic interpretability

Disentangled transformer v

In-context Markov chains Disentangled transformer

=
\ g, /
Q

Memory = 1 Depth = 2

~

\

Q Markovian inputs » Transformers

How do Transformers solve this task?

Position

How do Transformers solve this task?

Causal Graph First Attention Second Attention
Position Token Position input attention 1
S _ Token Position Token Position
Ry, 9
S S
A
I=hk=
L
o — §
-
o €8
2z
Sk I. I.
Readout Layer
Input first attention second attention
Token Position Token Position C Position Token Position

Output

How do Transformers solve this task?

Causal Graph First Attention Second Attention
Position Token Position input attention 1
Qﬁ) _ Token Position Token Position
4)
: e |
= CIE
= T8
A= =
S 5 =
ol g — 2
= | ||
a¥ =2
c|.g
8|2
B “*I. I.

Readout Layer

iInput first attention second attention

Token Position Token Position i EEEE Position Token Posmon

The first attention matrix is the adjacency matrix for the causal graph!

Output
Token

First Attention

Token Position

How Transformers Solve This Task

Token

First Attention:
copy each parent

A~ N
input a b

* *
* *
* *
L 4 L 4
L 4 L 4
L 4 L 4
L 4 L 4
L 4 L 4
.0 .0
L 4 L 4

Position

. A4 .
00000
. A4 .
. i 4 .
. i 4 .
. i 4 .
. i 4 .
000000
. * .

L4

‘A ‘A A A ‘A
attention 1 Cl b Cl C b

How Transformers Solve This Task

input

attention 1

attention 2

Second Attention:
compare to each parent

input

attention 1

Second Attention

input attentlon 1

T ken Position To ke

Token

input

first attention
Token

Posmon Token Position

second attention

I ii!! Position Token Posmon

Output
Token

Readout Layer: output empirical counts

input

attention 1

attentiq

Position

Output

Cau

Gradient Descent Dynamics

sal Graph First Attention Second Attention

Position Token Position input attention 1

Token Position Token Position

Token

iInput

Position
Position Token Position Token

attention 1

Readout Layer

Input first attention second attention

Token

Position Token Position nke Position Token Position

Main Result

Loss: cross-entropy

LO) =—E,, | D a(s'|splog(fy(s;.p)y)

i s'e[S]

Theorem (informal): If min z(s | s") > y/S almost surely over the prior P_,
s,s’

(1) There exists ¢ > 0 such that GD returns 6 satisfying:

L(0) — OPT <
Ter
(2) For any input sequence, the first attention pattern A € R/ satisfies:
1

where G is the adjacency matrix of the causal graph.

Corollary: Transformers trained on in-context Markov chains learn an induction head

OOD Generalization

Mechanistic understanding leads to provable OOD generalization:

Corollary:

Let 7 satisfy min (s’ | s) > y/S. Then with high probability over draw of s;.;:

s,s’

| fosi = 2C1sp || s ; ,

Note that 7 does not need to be in the support of P,.

Even if you learn an induction head on a very restricted class of sequences, this
circuit automatically generalizes out of distribution to arbitrary sequences

Proof Sketch

Key Lemma: For j < i, the gradient of the first attention layer is approximate

Pls;, SJ-]2
PLs]P[s;]

\Y% AS)L(Q) R — I)?(Si; s;|m) where L.(s;s;|7m):=E, Z

Sl"Sj

how much token i attends to token j
»? mutual information between the token

at position i and the token at position j

Corollary: Each position i will
eventually attend to the position j < i that

maximizes the y* mutual information

VA(I)L(e)

Proof Sketch

Corollary: Each position i will eventually attend to the position j < i that

maximizes the y* mutual information between s; and S;

in-context Markov chain
Data Processing Inequality:
Passing through a channel can only decrease mutual information:
o< I)?(S6; $3) < 15(56; Sy) < I;?(Sé Ss)
e Each token will attend to the token immediately before it

¢ The transformer learns an induction head!

Corollary: Each position i will eventually attend to the position j < i that

maximizes the y* mutual information between s; and S;

<>
ORORORORORO

more complex causal structure

Data Processing Inequality:
Passing through a channel can only decrease mutual information:
La(s;, 5)) is maximized at j = p(i), the parent of i
* The first attention layer learns the causal graph
* Special case of the well-known Chow-Liu algorithm (Chow & Liu, 1968) for learning

tree-structured graphical models!

How do Transformers learn Induction Heads?

3@ Markovian inputs » Transformers {

Memory = 1 Depth = 2

v

How do Transformers Implement Induction Heads?

O Markovian inputs » Transformers G

Memory = £ Depth /Heads

Multiple Parents & k-grams

* Each node can have multiple parents in the causal graph

* Example: k-gram language models

In-context 3-gram

Multiple Heads

Construction & Experiments: Each head attends to a different parent

Causal Graph First Head Second Head |

Position Position Position

Position
Position
Position

Position

Multiple Heads

i, "
> >

ORORORO

In-context 4-gram

Construction & Experiments: Each head attends to a different parent

Causal Graph First Head Second Head Third Head

Position

Position Position Position

Position
Position
Position

Position

Multiple Head: Learning Dynamics

[Chen et al. 2024]
N
> >4

ORORORO

In-context 4-gram

Causal Graph First Head Second Head Third Head

Position

Position Position Position

Position
Position
Position

Learning Dynamics

How gradient-descent learns induction heads

Learning Dynamics

How gradient-descent learns induction heads

LO Stage-wise learning dynamics

Stage-wise Learning Dynamics

Transformer KL-Divergence: 3 Symbols

[\e3 ~ 0.25 1 — Uniform
5 '.':-—1\?3 § 020 ~—— Unigram
: — 0.0 20 1 — Bigram
ﬂ/\{i —P 0001020202022000 é g
OION § 015
o.sé' \0.5/' o -g
{\0.5 g 010 -
07 :1| . S —
05 03 ' o
/\\ —P 1011202110111120 o
@ o AaN 0.00
é’ .] 1 ']
o 5T o 0 25 50 75 100 125
Number of Examples Seen (Thousands)

Memory = 1

Depth = 2

[Edelman et al. 2024]

Stage-wise Learning Dynamics

1.0
Unigram
0.91 Bigram
- Trigram
” — = 4-gram
o 0.8]
-
4+
0
0.7
0.61
0 100 200 300 400 500 600 700 800
Step
Memory —n —1 n-gram

Depth — 27 Heads = 7 Two-layer disentangled Transformer with n heads

[Varre et al. 2025]

Why does training linger at plateaus?

1.0
Unigram
0.9 Bigram
~ = Trigram
0
O 0.8
—J
4+
0
0.7
0.6+

[Varre et al. 2025]

Plateaus correspond to sub n-grams

1.01
Unigram
0.91 Bigram
- Trigram
” — = 4-gram
O 0.8
—
-
O
= 0.7
0.61
0 100 200 300 400 500 600 700 800
Step

Main result (Plateaus correspond to sub n-grams)

160, such that 0} represents a k-gram for k < n

0, is a (near) stationary point in the limit (length, param norm) — oo

1.704

1.68 4

1.64

1.62 1

Stage-wise Learning Dynamics

t=115

0

t=16000

2500 5000 7500 10000 12500 15000

Step (t)

Attention Scores o (Agh))

1

h =

t =115

t = 5000
Training Step (t)

t = 16000

What we know so far

G Markovian inputs > Transformers G

Memory = k Depth /Heads

What we know so far

@ Markovian inputs » Transformers G

Memory = k Depth /Heads

e Number of heads/layers should scale with £

[Edelman et al. 2024, Nichani et al. 2024, Chen et al. 2024]

But...

— .05
°§ 0.4 —k =4 '§0_4 —k =4
+ 0.3 + 0.3
= =
& H
0.2

% 0.2 %
80 80
5] /5]
§ 0.1 § 0.1 ‘\Q
7)7 | —ar
S S 0.0

0 5000 10000 15000 0 5000 10000 15000 20000 25000

Iteration A) o _ _ _ Iteration

2-layer transformer 5-layer transformer

What'’s happening?

Representation result

Main result (Constant depth suffices)

Any order k in-context estimator can be represented by a transformer

with 3 layers, 1 head per layer, relative positional encodings and layer norir

[Rajaraman et al. 2024]

Representation result

Main result (Constant depth suffices)

Any order k in-context estimator can be represented by a transformer

with 3 layers, 1 head per layer, relative positional encodings and layer norm

— Without non-linearities, you need logarithmic depth

[Rajaraman et al. 2024]

Intuition

(v, ur))

[vn[l2][wr]2

(realizes a k'™-order induction head)

attr , X exp (/«:

© Em) | | Ew@] (Lavers | Match contexts & count
- el Prl: b (Layes 1+2] Capture context
| .-+ | Emb(z,) | - | Emb(z7) | $

Intuition

2 layers suffice!

[Ekbote et al. 2025]

How Transformers exhibit In-Context Learning?

{J Markovian inputs v Transformers :Q

Memory = k Depth = 2,3

v

Key Takeaways

Shallow depth suffices!

Learning dynamics?

{J Markovian inputs v Transformers :Q

Memory = k Depth = 2,3

Open....

Markov Transformers

More...

Markov Transformers

e Attention sinks [Guo et al. 2024]

e Interleaved Markov chains [D’Angelo et al. 2025]

Topic models Transformers

Why topic models

mathematics algebra schubert beethoven mozart lizard toad frog

calculus

frog

Topical structure in BERT

toad lizard mozart beethoven schubert algebra mathematics calculus

-10

-09

Topic models

Latent Dirichlet Allocation (LDA) [Blei et al. 2003].

Topic models

Latent Dirichlet Allocation (LDA) [Blei et al. 2003].

[Sontag & Roy, 2011; Awasthi & Risteski, 2015; Arora et al. 2016; Tosh et al. 2021; Luo et al.,
2022, Li et al. 2023; Reuter et al. 2024]

Input data: LDA

To generate a document:
1. Randomly sample a set of 7 distinct topics from [T].
2. For each word,

1. Randomly sample a topic.

2. Sample a word from the vocabulary of the topic .

[Li et al. 2023, Lu et al. 2023]

Input data - assumption

Assumption: Each word belongs to exactly one topic.

To generate a document X:

1. Randomly sample a set of 7 distinct topics from [T7].

2. For each word,
1. Randomly sample a topic.

2. Sample a word from the vocabulary of the topic .

[Li et al. 2023, Lu et al. 2023]

Input data - masking

Randomly mask the tokens in the document.

Input data - masking

Randomly mask the tokens in the document.

Bangalore’s traffic is like Reviewer #2. Always pleasant to deal with.

Input data - masking

Randomly mask the tokens in the document.

Bangalore’s traffic is like Reviewer #2. Always pleasant to deal with.

Input data - masking

Randomly mask the tokens in the document

Masked language modeling

Predict the masked tokens using the unmasked ones

Transformer

Topic models /

| . Sequential data

Transformers

Model

\

Single-layer transformer

Encoder model. Embedding and attention layer without MLP.

Single-layer transformer

f(Z)=Wo (WyZ)SoftMax (W Z) WqZ) + b

Attention layer \
Z =WgX

Embedding layer

Single-layer transformer

WE

Key parameters
Wy, (Wg,Wq)

Topic models Transformers J

{)} Sequential data Model

Analysis

Freeze the embedding weights to one-hot encodings.

Analysis

Two-stage dynamics of value and (key, query) matrices

Stage : Stage 2:

e Value matrix . ||WK||_F

. : * Value matrix
ZIrows. z : stays constant.
4
* (Key, Query) * (Key, Query)
near zero. o 200 do 600 300 1k OTOW.
12
10
8
6
4
2
0 S N *
0 200 490 600 800 1k

|
j «-‘J/J

Step
0 200 400 600 800 1k

Main result - Stage 1

Value vectors encode the topic structure (informal)

Assuming the attention-weights to be frozen to uniform and token
embeddings to one-hot, training only the value matrix W, is a convex

problem. The optimal solution satisfies that

(WT/)same—topic — (Wt/)diff—topic =+ C, c > 0.

Main result - Stage 1

Value vectors encode the topic structure (informal)

Assuming the attention-weights to be frozen to uniform and token
embeddings to one-hot, training only the value matrix W, is a convex

problem. The optimal solution satisfies that

(W}k/)same—topic — (Wt/)diff—topic =+ C, c > 0.

.

While predicting masked token, unmasked tokens of similar topic contribute more

Main result - Stage 2

Attention weights encode the topic structure (informal)

Assuming value matrix to be frozen at the optimum from Stage 1 and
token embeddings to one-hot, training the (key, query) matrices yield
attention matrices that have higher attention across words of same

topic than those from different ones.

Key takeaways

Topic structure can be encoded in either

token embeddings and self-attention

Attention layer encodes this structure in a

two Stage process

(Consistent pattern for ditferent loss functions, optimizers, and

real-world datasets)

Topic models Transformers

Optimization
Sequential data » | Model

l

How do they learn?

v

Factual recall Transformers

Optimization
Sequential data » | Model

l

How do they learn?

[Nichani et al. 2024]

Factual recall

Sequential data

Whatis Factual recall?

What is the capital of France?

In which country was Marie / \

Poland
Curie born? ol

The association (France, capital, Paris) is stored somewhere within the weights

Factual recall

Motivating Questions:
* How do LLMs learn to store such facts within their parameters?

* What is the relationship between parameter count and the number of facts?

Factual recall

Motivating Questions:
* How do LLMs learn to store such facts within their parameters?

* What is the relationship between parameter count and the number of facts?

Main results

* Theoretical model for analyzing factual recall via associative memories

e Proving that transformers can memorize facts with near-optimal capacity

[Nichani et al. 2024]

Associative memories

* Input vocabulary [N] and output vocabulary [M]
* Ground truth association function f* : [N| — | M

* Embedding vectors { €, } »e[n] and unembedding
vectors { Uy j,e(ar] » sampled uniformly on sphere

* Transformer model F : R¢ — R¢

* Argmax decoding: f(z) = arg max u, F(e,)
ye[M]

* Perfect memorization: f*(x) = f(x),Vx € [N]

* How many parameters does F'need to achieve
perfect memorization?

Associative memories

1
2
3
N M
Upy
ey e
Uz
€ Uy
83 F(el)

Model from Cabannes et al., 2024.

Associative memories: Main results

Linear associative memory: F(z) = Wz, W € R%*¢

Theorem: Assume f™ is injective. If N = O(d?), then with high probability
there exists a W such that f(z) = f*(z),Vz € [N].

e Obtained by construction W = Z Up-(m) €, - SUperposition of outer products
xE[N]

Associative memories: Main results

MLP associative memory: F(z) =V 'o(Wz) for V,IW € R™*¢

Theorem: If N = O(md) , then with high probability there exists a T¥ such
that f(z) = f*(x),Vz € [N].

* Improvement over one-hot embeddings, which can only store [V oc d associations

e Matching lower bounds

Synthetic task for Factual recall

The capital of France is Paris

s € 8: subject token
r € R: relation token
a*(s,r) € A,: attribute/fact to be stored

z; € N': noise tokens

Synthetic task for Factual recall

The capital of France is Paris

How many parameters do Transformers need to solve this?

Factual recall /

Sequential data

Transformers

Sequential data Model

Single layer transformer with MLP

* Random embeddings

* Embedding dimension d, head dimension d;,, MLP width m, H heads

Transformers

Model

Sequential data

Optimization

l

>

Model

How many parameters to they need?

Theorem (informal)
* Attention + MLP: Hd;, 2 S + Randmd 2 SR suffices

o Attention-only:d > R + A and Hdj, > S suffices (Amax = max Al

How many parameters to they need?

Theorem (informal)
 Attention + MLP: Hd;, > S + R and md 2 SR suffices

o Attention-only:d > R + A and Hdj, > S suffices (Amax = max|A,|)

1.0

alpha=4.0, beta=4.0 4000
alpha=4.0, beta=2.0

alpha=4.0, beta=1.0 v
alpha=4.0, beta=0.5 3500
alpha=2.0, beta=4.0

alpha=2.0, beta=2.0 3000
alpha=2.0, beta=1.0
alpha=2.0, beta=0.5
alpha=2.0, beta=0.25
—o— alpha=1.0, beta=2.0
alpha=1.0, beta=1.0
alpha=1.0, beta=0.5
alpha=1.0, beta=0.25
alpha=0.5, beta=4.0 1500
alpha=0.5, beta=2.0

alpha=0.5, beta=1.0

alpha=0.5, beta=0.5 1000
alpha=0.5, beta=0.25

alpha=0.25, beta=4.0 500
alpha=0.25, beta=2.0
alpha=0.25, beta=1.0
alpha=0.25, beta=0.5 T T T
a|gha=o,25, beta=0.25 2000 4000 6000 3000

Facts « Params Attention parameters

tt

104_
-0.8

0.6

103 J

MLP params

0.4

Number of Facts Stored

102 J

-

0.0

SEESEERR

103 104 105 106
Number of Parameters

Number of Facts Stored

Number of facts stored scale linearly with parameter size

[Allen-Zhu et al. 2024]

r1.0

alpha=4.0, beta=4.0
alpha=4.0, beta=2.0
alpha=4.0, beta=1.0
alpha=4.0, beta=0.5
alpha=2.0, beta=4.0
alpha=2.0, beta=2.0
alpha=2.0, beta=1.0
alpha=2.0, beta=0.5
alpha=2.0, beta=0.25
alpha=1.0, beta=2.0
alpha=1.0, beta=1.0
alpha=1.0, beta=0.5
alpha=1.0, beta=0.25
alpha=0.5, beta=4.0
alpha=0.5, beta=2.0
alpha=0.5, beta=1.0
alpha=0.5, beta=0.5
alpha=0.5, beta=0.25
alpha=0.25, beta=4.0
alpha=0.25, beta=2.0
alpha=0.25, beta=1.0
alpha=0.25, beta=0.5 T T T
alpha=0.25, beta=0.25 2000 4000 6000 8000

Facts « Params Attention parameters

104 i

Tt

0.8

0.6

103 4

Pttt
MLP params

0.4

102 J

0.0

SEEREERRE

103 104 105 106
Number of Parameters

Sequential data Model

How do they learn?

e Linear attention, one-hot embeddings

* Gradient flow with initialization Wy (a, 2), wxg(2) = a > 0

Theorem (informal)

* Global convergence to zero loss

* Intermediate phase where model predicts with p(a | r) instead of p(a | s, 1)

Cross Entropy Loss

© O
o u

How do they learn?

= N N
o U1 O U

Stage 2: Stage 3:
Hallucination Convergence

_____ —— Relation-only

—— Subject-only
—— Total

0

2000

4000 6000 8000
Steps of GD

Hallucination stage where
prediction is only based on
the relation

|—° Stage-wise with sub-n grams

Key Takeaways

Transformers memorize facts with near-

optimal capacity

Sequential learning behavior—lirst using only

the relation, then both subject and relation

Factual recall Transformers

Optimization T
Sequential data » | Model G

l

How many parameters to they need?

How do they learn?

v

Markov/n-gram

Topic models

Factual recall Transformers

l

How do they learn?

v

More...

Compositional/Multi-hop reasoning Transformers

[Wang et al. 2025, Guo et al. 2024]

Optimization
Sequential data » | Model

l

How do they learn?

Partll

v

Optimization
Sequential data » | Model

How do they generalize?

Part 1l

Part 11
Generalization

(properties of practical solutions)

Recap

Part I: representability — existence of solutions?
* Upper bound: e.g. automata; induction head.

* Lower bound: depth (Transformer) and width (Transformer + RNNs).

!

Provable benefit of depth/CoT: length generalization

Part II: optimization — searching for solutions?

* Can find (local) optima for e.g. Markov data, topic model, linear regression.

* Caution: different optimal solutions may generalize differently.

Part lIl — (a tiny bit about) generalization

1. Length generalization

* Setup: train on small, test on large.

e Challenging — causes & mitigations?

o Proper measure of size: e.g. parity: Z x; matters (more than 7).

l

* RASP-L conjecture: short RASP-L program — length generalize v'.
[Zhou et al. 23]

[o, o . . '3 9
Takeaways: 1) positions cause issues; 2) potential new “hierarchy”.

e.g. RASP-L is more fine-grained
parity (X), majority (v') € TCO\ACO

Part lIl — (a tiny bit about) generalization

1. Length generalization

* Setup: train on small, test on large.

e Challenging — causes & mitigations?

o Proper measure of size: e.g. parity: Z x; matters (more than 7).

l

* RASP-L conjecture: short RASP-L program — length generalize v'.

[o, o . . '3 9
Takeaways: 1) positions cause issues; 2) potential new “hierarchy”.

e.g. RASP-L is more fine-grained
parity (X), majority (v') € TCO\ACO

“** C-RASP [Yang et al. 24]

Part lIl — (a tiny bit about) generalization

2. Same-length generalization

e Setup: same-length OOD sequences.

* Can the model always learn a robust solution?

* No, even for a naive task (2-layer representation; easy to learn).

Part lIl — (a tiny bit about) generalization

2. Same-length generalization

e Setup: same-length OOD sequences.

* Can the model always learn a robust solution?

* No, even for a naive task (2-layer representation; easy to learn).

Flip-flop: a task that’s easy to represent and learn.

/N

2-layer, constant-size great in-distribution accuracy
(Part 1) (Part II)

... yet with imperfect OOD generalization.

[Liu et al. 23]

Part lIl — (a tiny bit about) generalization

2. Same-length generalization

e Setup: same-length OOD sequences.

* Can the model always learn a robust solution?

* No, even for a naive task — inherent limitations of attention.

Flip-flop: a task that’s easy to represent and learn.

/N

2-layer, constant-size great in-distribution accuracy
(Part 1) (Part II)

... yet with imperfect OOD generalization.

[Liu et al. 23]

Summary

via studying sandboxes

Part I ... what are the solutions in practice?
* Tools for upper and lower bounds on the solution size.

* Implications: depth-width tradeoff; architecture comparison & improvement.

Part 11 ... how well can the solutions be found?
* Implicit bias of gradient-based methods, canonical reparametrization.

* Simplicity bias, stage-wise training.

Part IIL... why & how models (fail to) generalize?
* Length generalization: proper measure of size; RASP-L.

e Same-length OOD generalization: inherent limitations of attention.

Summary

benefits of sandboxes

Understanding & clarity
* e.g. architecture choice (Part I); length generalization (Part I & III).

* e.g. training dynamics (Part II).

Diagnoses & stress test
* e.g.1-layer models fail to learn 1st-order Markov chains (Part 1)

* e.g. attention’s limitations revealed by flip-flop (Part III).

Algorithm design

* e.g. hybrid models (Part I); structured assumptions to improve OOD.

Summary

limitations of sandboxes
Gap between sandboxes and real-world

Data: Model:

 Which data structures to use? What architectures choices are essential?

, _ e.g. layers? tokenization?
e Single sandbox — a mixture?

* Assumptions on pretrained models?
e.g. (Fourier) features? ICL /emergence?

Learning from Sandboxes

A lot of more to do! We need you :)

Understanding & clarity
* e.g. architecture choice (Part I); length generalization (Part I & III).

* e.g. training dynamics (Part II).

Diagnoses & stress test
* e.g.1-layer models fail to learn 1st-order Markov chains (Part 1)

* e.g. attention’s limitations revealed by flip-flop (Part III).

Algorithm design

* e.g. hybrid models (Part I); structured assumptions to improve OOD.

