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The “ultimate mirror hypothesis”
N =1 and the master equation
N =1 and the master field

What about the Kahler potential ?




Starting with the work of Seiberg, there
has been a lot of success in recent years
in “solving” fairly general N =1

supersymmetric field theories. There are

two very general aspects of this:

e Systematically exploiting the
consequences of supersymmetry for
“protected” quantities, such as
holomorphy of the superpotential.

e Settling for qualitative results for
unprotected quantities, such as the

Kahler potential.

In N =1 field theory, this suffices to get

exact results on the set of supersymmetric

vacua and domain walls between them.




Is there any fundamental obstacle to

carrying out such a program for all of

string and M theory, to get a description

of all N = 1 supersymmetric vacua 7

Obviously doing this is beyond our
present capabilities, but perhaps it is not
as far beyond as we think.

The simplest description we might
imagine for the problem of N =1
compactification would be purely
geometric. What this would mean can be
illustrated by the following claim, which
is not obviously false:

All d =4, N = 2 string/M vacua are dual
to those obtained (by continuation from)

type IIb on Calabi-Yau.




In type IIb, the prepotential is geometric:
it can be computed at gs = 0 by solving
PDE’s. Mirror symmetry, S-duality, etc.
allow reducing other constructions to this
case.

A slightly more general claim of the same
type would be that one must add
“generalized Calabi-Yau’s” (for example,
with discrete torsion), which can be
defined using geometric methods.

Such a claim (if true) does not in itself

give the list of possible compactifications,
nor would it make the dual constructions
useless. But it would set the problem of
listing N = 2 compactifications in a very
clear framework, and give a very clear
target for some more fundamental
formulation to reproduce.




There are many geometric constructions
of N =1 (heterotic; branes on CY3; flux
on CY3; F theory on CYy; M on Gbs...)
but all known at present which lead to
quasi-realistic theories require adding
instanton corrections to get exact results.

Nevertheless, we can frame the “ultimate
mirror symmetry” hypothesis: there
exists a class of object (say CY fourfolds
with X structure), defined by geometric

methods (say solving PDE’s or making

finite “combinations” of such solutions),
which is in one-to-one correspondence
with N = 1 compactifications of string/M

theory on the quantum level.

Is there evidence for or against this

hypothesis 7




By now, many geometric duals which
sum up nonperturbative effects are
known, especially if we restrict attention
to the field theory limit and/or the large
N limit, and this might be considered
evidence in favor. Impressive progress in

this direction has recently been made

(Dijkgraaf-Ooguri-Vafa; Nekrasov).

A simple example (Gopakumar-Vafa) is
the claim that D5-branes wrapping a
(—1,—1) P! curve are dual to the

deformed conifold with flux on S3.

Assuming this local construction works
globally, then a compactification using
only D5 and O5 (e.g. see Acharya et al),
would be dual to a flux compactification,

for which the superpotential is classical.




Let us see what is behind this to judge
how far it could go. The starting point is
type IIb on a CY3 M with an orientifold
and B-type (holomorphic) D-branes, a
very general class of models. One then
has an exact formula for the classical
superpotential:

W = [ﬂﬁ((ﬁgﬂ-k giﬁ) + (F +1~H)) .

This combines the holomorphic
Chern-Simons action and the flux
(GVW) superpotential. Here €2 is the
holo. 3-form on M, 9 + A the
holomorphic gauge connection (for branes
wrapping M), F' and H the quantized

RR and NS 3-form fluxes, and
7 = CVY + ie P the complex dilaton.
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This formula requires some interpretation
but leads to all known type Il classical

superpotentials.

For type I theory (branes wrapping M),

it is interpreted as follows: A is a ten

dimensional gauge field, which can be
regarded as a collection of infinitely many
four dimensional fields. In any given
background, finitely many are light. The
four-dimensional superpotential is
obtained by integrating out the others.

For branes wrapping lower dimensional
cycles, one can either reduce in higher
dimensions, or build these branes as
brane-antibrane bound states and
integrate out. Let us discuss the second

procedure as 1t is not as well known.




The simplest example is a C* /Zg

orbifold, whose resolution is a
noncompact CY3 M. The world-volume
theory of branes on M can be derived by
projection of N =4 SYM. Let Zg act as
2t — e2™ai/K4i then there is a cubic
superpotential W given by

i
Zfij-‘ﬂ tr X, n+a1Xn+a”n—|—a +a;

TL

Supersymmetric configurations of these
quiver theories correspond to (compact)
branes on M carrying holomorphic
bundles, and this superpotential is the
reduction of the holomorphic
Chern-Simons action to the light states.
In this example, one can think of this as

substituting A = in Atm) X3

T, n+ay

into
the cubic A% term and integrating.




In the orbifold example, the exact W is
cubic, and one-can get 1t by truncating
massive modes. But in general, one must
integrate them out: tree diagrams in holo
CS theory lead to higher order terms.

The general theory of this can be
understood using the theory of A,
algebras, as has been discussed by
Merkulov, Lazaroiu, Tomasiello, and
others. Integrating out requires choosing
a gauge, which depends on Kahler data
(e.g. 0= giEDiﬂi). Naively, this spoils
the independence of the superpotential

on Kéahler data (“decoupling”).

However, different choices of gauge lead
to W related by A., quasi-isomorphism,
a generalization of the notion of field
redefinition.




Explicit holo CS perturbation theory is
complicated, but one can achieve the
same result by doing simpler linear sigma
model computations. An example studied
in DGJT is the quintic Q C P*. The
linear sigma model realizes this as a
hypersurface in the resolved orbifold
C®/Z?, an orbifold theory with 5
fractional branes and antibranes.
Mathematically, these are bundles which
can be restricted to the quintic, and a

large subset of branes on the quintic can

be obtained from them as bound states.

O . |
P \S) W =4, ){:Xj!f-.
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In this case, the cubic orbifold
superpotential is just a leading

approximation: the world-sheet theory is

S = /d49|Z|2+f COfiiamZ 22 Z5Z2' 2™,

W obtains an infinite series of corrections
which can be computed by perturbing
in the world-sheet superpotential,
i.e. by computations in free C°> CFT. In
DGJT the first correction was computed
and checked against geometric results.

W = €apegetr X2 XY %€ 4+
47°
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Nel 12

Again, the natural setting for these
computations is A, algebras and
deformation theory. The superpotential
can be regarded as the generating
function for structure constants of an A,

algebra,

0 0 0
/an-mh(ah...,akj = 90t EW(Q

The A, axioms are encoded in the
“classical master equation” of the BV

formalism,
0={W,W}

Starting with the cubic W, one can find
the space of possible A., deformations up
to field redefinition, by cohomological

techniques.




The allowed deformations turn out to be

precisely the deformations f;;kiy of the

defining equation for the quintic, and
these ideas lead to a proof that the

resulting category of branes is D(Coh @)
(Seidel; Douglas and Seidel).

As in previous work, the derived category
D(Coh Q) enters because the question of
which supersymmetric configurations are
“branes” and which are “antibranes”
depends on Kahler moduli. Any result
which i1s independent of Kahler moduli,
such as the superpotential for any
sufficiently large set of brane
configurations, is best formulated in this
language. More concrete results can be
obtained by choosing bases to get families
of Seiberg dual theories.
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An application (in preliminary stages):
tuning the number of generations. In
traditional heterotic string

compactification, one seeks bundles V
with rank r = 3,4,5, ¢;(V) =0,
EE(V) — Eg(Tﬂ’f], Eg(V] — ZNQEH = 6.

Using the above ideas, one can construct
brane configurations with specified Chern
classes, and which can be checked to
correspond to bundles in certain cases.
Essentially, one takes r D6’s carrying a
copy of the tangent bundle, and makes
bound states with D0’s.

For M = () and the Beilinson basis, this
translates into N, = 100 — 5n with

multiplicities N; =

(5—n 15— 2n 35 — 3n 65 — 4n 102 — 5n).




One can show that such configurations
exist for n < 5'since the expected
dimension D(N) = 222 — 15n > 0. They
are generically sheaves on P* with

point-like singularities off of @), so should

restrict to bundles on ). For n > 5 one
gets some N; < 0, but by change of basis
(Seiberg duality) one can lower Ngp,

further. One can also generalize by
allowing Mb’s, etc.

These techniques can be applied to
general LG orbifolds, i.e. hypersurfaces
in WPy, ....ws. Existing methods can get
Ngen divisible by ged(m,, ), where my,, is
the multiplicity of the weight w = w;.

This suggests that three generation

models might be rather common.




Although not strictly geometric, the
derived category is close enough to count
as “geometric” for our previous

discussion. One also has a criterion for
the physical branes (Il-stability) which

incorporates all world-sheet instantons,
yet is formulated in purely geometric
terms. In this sense, we can also count
these results as evidence in favor of the
“ultimate mirror hypothesis.”

The appearance of A., and BV is because
these computations fit into the general
context of topological open string
field theory. Its “effective action” is the
superpotential, which gives the precise
sense in which this is a “protected”
quantity. If we could quantize this theory,
we could compute exact superpotentials.
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This brings us to Vafa and collaborators,
who have achieved impressive results
along these lines. Perhaps the simplest
example (Dijkgraaf-Vafa) is a system of
D5’s wrapped on a collection of
“semi-rigid” curves, i.e. a family of
curves with normal bundle O ¢ O(—2),
deformed into isolated curves. This
corresponds to deformed holo CS theory:

W = ftr V00" + ww (o).

This 1s a 2d bc system and everything is
computable; in fact it reduces to a one
matrix integral.

At large N, this integral has a “master
field,” the saddle point value of ¢°. This
encodes the deformation of the original

geometry, to the dual S®/flux geometry.
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At finite NV, the theory is quantum but
still exactly solvable, and produces an
exact field theory superpotential.

There are many nontrivial ingredients in

these claims:

e The 5+ 1 world-volume theory can
be reduced to d = 2 in the naive way.

(Gauge theory instanton effects are
reproduced by what naively appears
to be a perturbative open string
computation. This has been
explained in the simplest example as
coming from an overall volume
factor, but still seems mysterious.

Closed strings are not present in

these examples (they are not
expected to decouple [BCOV]).




Clearly it is too early to say what the
real lessons are from this. But is there
evidence here for or against the “ultimate

mirror hypothesis” 7

Here, the geometric description follows
from the existence of a master field for

large N. For finite /N, one must work

with quantized holo CS theory, in which

known results are not “geometric” in the

simple sense we want.

We want finite N branes for a true string
compactification. So, the key question
would seem to be whether the
superpotential 1s given by large N results

for this case — very important if true.

Either way, these are powerful results —
can they generalize to compactifications?




In general, holomorphic Chern-Simons
theory is six dimensional. Even if one
considers lower dimensional branes

wrapped on cycles (such as the D5), if we

work on a compact CY, winding modes
(or T-duality) come in and make the
theory six dimensional. It is hard to
believe that lower dimensional reductions
exist in the stringy regime. But, perhaps
some combination of these arguments to
get results in field theory limits, with
holomorphy to continue the results into
the stringy regime, could lead to stringy
exact results on compact CY.

Another issue for compact CY is that
closed strings are dynamical, so these
moduli should be integrated over. We
return to this later.
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Let us suppose we manage to compute
interesting exact superpotentials in string
theory (of course there are known
examples such as the flux
superpotential). Can we go on to find all

supersymmetric vacua?

In general, the problem of finding vacua
in string theory must be addressed in
N =1 supergravity. In this theory, the
supersymmetric vacua depend on the
choice of Kahler potential. They are

solutions of

So far as anybody knows, K is not
protected by supersymmetry, so we have

a problem.

21



The usual response to this problem is to
only consider Minkowski vacua, with

W = DW = 0. The problem of finding
these does not depend on K.

There are reasons not to be satisfied with
this answer, however. The main one is
that we do not live in an N =1
supersymmetric vacuum. Rather, one is
at best looking for approximately
supersymmetric vacua with breaking at a
low scale Mysy-

One can still use N = 1 techniques to
study the high energy dynamics, but then

all one knows about the vacuum energy is

that it is O(M'jusy). So supersymmetric

AdS vacua are a priori just as relevant.

22



There are also formal reasons not to be
satisfied just with the Minkowski vacua.
The conditions W = DW = (0 are more
equations than unknowns. This makes
them difficult to study — solutions are
nongeneric but often appear anyways, in
a way which depends sensitively on W.

The equations DW = 0 are better
behaved and in fact the number of
critical points of a holomorphic function
W would be expected to be a topological
invariant. This raises the possibility that
one could find a topological formula for
the total number of N = 1 vacua in a

sector of configuration space, but only by

counting AdS vacua as well as Minkowski.
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However, since K is not holomorphic,
DW is not a holomorphic one-form, and
1t 1s easy to construct examples in which
the number of vacua changes upon
varying K. This is easy tosee if W =1
(do a Kahler-Weyl transformation), so

that D;W = 0, K. Consider one chiral
superfield ¢ = = + 1y; the ansatz

K = f(z) 4y

will satisfy g;; = 8;0, K > 0 if f" > -2,

and by varying f one can create pairs of

vacua at fi{z) = y=0.

So, there cannot be a topological formula

for the number of vacua per se.




However, if varying the data can only

create pairs of vacua, one can try to
define an index, in which this cancels out.

If we are counting critical points of a
function K, this is the standard Morse
index, which weighs critical points by

sgn det 0;0; K. This is constrained by the
homology of the space, as is well known.
If the configuration space were a compact
manifold, the topological formula for this
index is the Euler number.

This is all one can say if W # 0, but the
interest of the problem is that W can
have zeroes and poles, and in principle
one has more topological information
from supergravity: namely, W is not a
function, but a section of a negative line
bundle over configuration space.




For general W, susy vacua are critical
points of e W. This is neither real nor a
function and Morse theory does not
directly apply. Critical points of

A = —3eX|W|? include all points W = 0.

However, one can define an index as
follows. Suppose the vacua v are isolated,
then

I'= ngn det M;;(v)

where M;;(v) is the supergravity fermion
mass matrix (for fermions in chiral
multiplets), expanded around the vacuum
v, with four dimensional space-time taken
as Minkowski or AdS depending on A.
This weighs Minkowski vacua with +1,
and AdS vacua as sgn det(D;D;W/W)
(the same as the Morse sign).
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One can define the contributions of
nonisolated vacua, following standard
lines in the two cases (deforming K splits
AdS vacua; a moduli space of Minkowski
vacua contributes its Euler character).
The result is an index which is invariant
under reasonable variations of K, again
essentially by standard arguments (since

such variations do not mix Minkowski

and AdS vacua).
As with the field theory Witten index,

this index contains useful information
about the existence of vacua, and might
be used in studying N = 1 duality (two

dual theories must have the same index).




If we make unrealistic simplifications (W
does not have poles, the configuration
space is compact, etc.), one can compute
the index using the standard formula for
counting zeroes of a section,

i / en(L ® T* M),
M

where M is the a configuration space, and
W is a section of a line bundle £ over M.
To some extent one can relax these
simplifications, but as yet not enough to

treat examples from string theory.




In any case, the index [ is perhaps the
most basic quantity which characterizes a
region in N = 1 configuration space, and
is computable in principle in terms of

“protected” quantities.

In our earlier discussion of quantized
holomorphic Chern-Simons theory, we
mentioned that the closed string moduli
are in fact dynamical (governed by the
Kodaira-Spencer theory of Bershadsky et
al). If we integrate over them, we cannot

regard the superpotential as a function

(or section) on this configuration space.




Rather than compute a superpotential, it
is tempting to instead define the theory
so that its partition function counts

supersymmetric vacua, in the sense we
just defined.

1= [(DAjdgle™

evaluated with (presumably) a choice of
CY3 and topological sector for the gauge
field (determined by a choice of
orientifold projection).

If these numbers are finite, they should

be quite interesting to compute.
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