Cosmological Predictions in the Landscape

Raphael Bousso

Center for Theoretical Physics University of California, Berkeley

Strings 2007, Madrid

0

Raw landscape statistics is not enough. There are additional selection effects:

Raw landscape statistics is not enough. There are additional selection effects:

1. Cosmological dynamics can enhance or suppress the probability of vacua

Raw landscape statistics is not enough. There are additional selection effects:

- 1. Cosmological dynamics can enhance or suppress the probability of vacua
- 2. Anthropic selection (e.g., $\Lambda \ll 1$)

Raw landscape statistics is not enough. There are additional selection effects:

- 1. Cosmological dynamics can enhance or suppress the probability of vacua
- 2. Anthropic selection $(e.g.,\,\Lambda\ll1)$

Quantifying these effects involves several challenges, including the measure problem in eternal inflation

References

1980's and 90's:

- Linde et al.
- Vilenkin et al.
- Weinberg et al.
- many others
- For recent work, see e.g.
 - Schwartz-Perlov & Vilenkin: hep-th/0601162
 - Vilenkin: hep-th/0611271
 - ► Linde: 0705.1160
 - Clifton, Shenker & Sivanandam: 0706.3201

The causal diamond approach

In this talk I will present the causal diamond approach

RB: hep-th/0605263 RB, Freivogel & Yang: hep-th/0606114 RB, Harnik, Kribs & Perez: hep-th/0702115 RB & Yang: hep-th/0703206

- I will show that it is
 - highly predictive
 - in good agreement with observation

The causal diamond approach

In this talk I will present the causal diamond approach

RB: hep-th/0605263 RB, Freivogel & Yang: hep-th/0606114 RB, Harnik, Kribs & Perez: hep-th/0702115 RB & Yang: hep-th/0703206

- I will show that it is
 - highly predictive
 - in good agreement with observation
- The approach follows naturally from results in black hole physics.

The xeroxing paradox

- In black hole evaporation, unitarity appears to require $|\psi\rangle \rightarrow |\psi\rangle \times |\psi\rangle$
- Xeroxing conflicts with the linearity of quantum mechanics
- But no-one can see both copies of $|\psi\rangle$

The causal diamond

- Restrict to spacetime region accessible to a single worldline: causal diamond
- Describe any such region but not more
- This restriction impacts predictions in the landscape through both cosmological and anthropic selection effects
- I will present one example for each

Cosmological Selection Effects

Anthropic (or Entropic) Selection Effects

The basic question

What is the probability for vacuum X to be produced?

Eternal inflation

- Globally, the Universe is eternally inflating
- Each vacuum is produced infinitely many times

Eternal inflation

- Globally, the Universe is eternally inflating
- Each vacuum is produced infinitely many times
- Need cutoff to define probabilities

Eternal inflation

- Globally, the Universe is eternally inflating
- Each vacuum is produced infinitely many times
- Need cutoff to define probabilities
- Ambiguities [Linde, Vilenkin]
- Many simple choices ruled out by paradoxes

Causal diamond cosmology

- For a single worldline, inflation eventually ends in a "terminal vacuum" (Λ ≤ 0)
- Reducing to the causal diamond eliminates almost all of the global spacetime

Causal diamond cosmology

Probability of vacua in the causal diamond

The probability vector P satisfies [RB: hep-th/0605263]

 $(1-\eta)\mathbf{P} = \eta \mathbf{P}^{(0)}$

- Equivalently, probabilities can be estimated by generating Monte Carlo decay chains. This is more practical for a large landscape.
- Let us apply this prescription to a toy landscape with 10^{100's} of vacua. [RB & Yang: hep-th/0703206]

BP model

- ► J = 250 fluxes: n₁,..., n_J
- ▶ membrane charges ~ 1/30: *q*₁ < ... < *q*_J

$$\Lambda - \Lambda_{\text{bare}} = \frac{1}{2} \sum n_i^2 q_i^2$$

$$\blacktriangleright \Delta \Lambda \ll 10^{-123}$$

Statistical questions

- How many vacua have $\Lambda \sim 10^{-123}$?
- What are their typical values of fluxes?

Let us ask these questions first for the "raw landscape", and then with cosmological dynamics taken into account.

Raw landscape statistics: Method

Consider a canonical ensemble of vacua, with β dual to Λ .

Flux probabilities:

$$p_i(n) \propto \exp\left(-eta rac{n^2 q_i^2}{2}
ight)$$

Shannon entropy:

$$S = -\sum_{i,n} p_i(n) \log p_i(n)$$

Number of vacua in the ensemble:

$$\mathcal{N} = \exp(\mathcal{S})$$

Raw landscape statistics: Results

 $p_i(n) \rightarrow \mathcal{N} \rightarrow 10^{121}$ vacua with $\Lambda \sim 10^{-123}$

- 1. Generate initial conditions
 - Assume no strong preference for small or negative Λ
 - Start with random vacuum, $\Lambda \sim O(1)$.
 - True randomness is hard; use canonical ensemble

- 2. Generate Monte Carlo decay chain
 - Use branching ratios computed from instantons
 - Restrict to single-flux decays

- 2. Generate Monte Carlo decay chain
 - Use branching ratios computed from instantons
 - Restrict to single-flux decays

- 2. Generate Monte Carlo decay chain
 - Use branching ratios computed from instantons
 - Restrict to single-flux decays

- 2. Generate Monte Carlo decay chain
 - Use branching ratios computed from instantons
 - Restrict to single-flux decays

- 2. Generate Monte Carlo decay chain
 - Use branching ratios computed from instantons
 - Restrict to single-flux decays

- 3. Record final flux configuration (n_1, \ldots, n_J)
 - Good statistics for each flux after a few thousand runs
 - Obtain flux probabilities $p_i(n)$

Cosmological selection: Results

- Sharp contrasts with raw landscape, e.g.:
 - ▶ first 30 fluxes all ≤ 2
 - no fluxes > 4
- Hundreds of predictions, many with probability near 1
- > Only 10^{80} vacua with $\Lambda \sim 10^{-123}$ (1 in 10^{41} selected)

Origin of cosmological selection effects

- Large fluxes, and those associated with small-charge membranes, are particularly unstable
- They decay early in the chain, and will not be observed

General lessons

- Cosmological selection thins out the landscape,
- suppressing large classes of vacua and
- leading to strong predictions
- Some models can be ruled out by cosmological selection
- No "staggering" problem

Cosmological Selection Effects

Anthropic (or Entropic) Selection Effects

The basic question

What is the probability for vacuum X to be observed?

Observers in the causal diamond

- Weight each vacuum by the number of observers, or observations, it contains
- In the causal diamond, this number is finite
- But what is an observer/observation?
- ► Trade "observers" for a better defined quantity, △S.

The Causal Entropic Principle

- Observation requires free energy; must produce entropy
- Conjecture that on average, $N_{
 m observers} \propto \Delta S$
- Let ∆S(X) be the matter entropy produced inside the causal diamond, in vacuum X, since reheating
- Weight by ΔS :

 $\mathcal{P}_X \propto \mathcal{P}_X \Delta S$

A statistical question

What is the probability distribution for A?

- Restrict to the subset of the string landscape with low energy physics identical to ours
- Only A varies
- By entropic weighting,

$$rac{d {\cal P}}{d \log \Lambda} \, \propto \, \Lambda \, \Delta {\cal S}(\Lambda)$$

• Computing $\Delta S(\Lambda)$ is an astrophysics problem

Main result: The probability distribution for Λ

Our A is typical under this distribution [

[BHKP: hep-th/0702115]

Origin of this distribution

- Λ wants to be large by raw statistics
- But A should not dominate too early, or it will expel all matter (and free energy) from the diamond
- The preferred A starts dominating around the time when entropy production peaks
- This solves the coincidence problem
- With our low energy physics, entropy production peaks at ~ 10¹⁰ yr.

• This explains why $\Lambda \sim 10^{-123}$

Including more variables

- Galaxy formation plays no role in suppressing large Λ
- This bodes well for cases with variable $\delta \rho / \rho$, ...
- ΔS is dominated by IR from dust heated by starlight
- So, in vacua similar to ours, ∆S is sensitive to the existence of galaxies, stars, and heavy elements
- ► This suggests that △S will be a good proxy for N_{observers}

Summary

- The causal diamond provides a well-motivated regulator for eternal inflation
- Cosmological selection thins out the BP landscape
- Many predictions, some counter to landscape statistics
- Observed A is in good agreement with anthropic weighting in the causal diamond
- Weighting by entropy production is equally successful and universally defined