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Landscape statistics

Raw landscape statistics is
not enough. There are
additional selection effects:

1. Cosmological dynamics
can enhance or
suppress the probability
of vacua

2. Anthropic selection
(e.g., Λ � 1)

Quantifying these effects
involves several challenges,
including the measure
problem in eternal inflation
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I The approach follows naturally from results in black hole
physics.



The causal diamond approach

I In this talk I will present the causal diamond approach

RB: hep-th/0605263
RB, Freivogel & Yang: hep-th/0606114

RB, Harnik, Kribs & Perez: hep-th/0702115
RB & Yang: hep-th/0703206

I I will show that it is
I highly predictive
I in good agreement with observation

I The approach follows naturally from results in black hole
physics.



The xeroxing paradox

I In black hole
evaporation, unitarity
appears to require
|ψ〉 → |ψ〉 × |ψ〉

I Xeroxing conflicts with
the linearity of quantum
mechanics

I But no-one can see both
copies of |ψ〉



The causal diamond

I Restrict to spacetime
region accessible to a
single worldline: causal
diamond

I Describe any such
region but not more

I This restriction impacts
predictions in the
landscape through both
cosmological and
anthropic selection
effects

I I will present one
example for each



Cosmological Selection Effects

Anthropic (or Entropic) Selection Effects



The basic question

What is the probability for vacuum X to be produced?



Eternal inflation

I Globally, the Universe is eternally inflating
I Each vacuum is produced infinitely many times

I Need cutoff to define probabilities
I Ambiguities [Linde, Vilenkin]
I Many simple choices ruled out by paradoxes
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Causal diamond cosmology

I For a single worldline, inflation eventually ends in a
“terminal vacuum” (Λ ≤ 0)

I Reducing to the causal diamond eliminates almost all of
the global spacetime



Causal diamond cosmology

I The causal diamond will contain a
sequence of vacua corresponding to
a particular decay chain through the
landscape

I The probability of X to be part of this
chain is well-defined and easily
computed from branching ratios, ηAB



Probability of vacua in the causal diamond

I The probability vector P satisfies [RB: hep-th/0605263]

(1− η)P = ηP(0)

I Equivalently, probabilities can be estimated by generating
Monte Carlo decay chains. This is more practical for a
large landscape.

I Let us apply this prescription to a toy landscape with
10100′s of vacua. [RB & Yang: hep-th/0703206]



BP model

Λ>0

Λ<0

Λ>1

I J = 250 fluxes:
n1, . . . ,nJ

I membrane charges ∼ 1/30:
q1 < . . . < qJ

I Λ− Λbare = 1
2
∑

n2
i q2

i
I ∆Λ � 10−123



Statistical questions

I How many vacua have Λ ∼ 10−123?
I What are their typical values of fluxes?

Let us ask these questions first for the “raw landscape”, and
then with cosmological dynamics taken into account.



Raw landscape statistics: Method

Consider a canonical ensemble of vacua, with β dual to Λ.

I Flux probabilities:

pi(n) ∝ exp

(
−β

n2q2
i

2

)

I Shannon entropy:

S = −
∑
i,n

pi(n) log pi(n)

I Number of vacua in the ensemble:

N = exp(S)



Raw landscape statistics: Results
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pi(n) → N → 10121 vacua with Λ ∼ 10−123



Cosmological selection: Method

1. Generate initial conditions
I Assume no strong preference for small or negative Λ

I Start with random vacuum, Λ ∼ O(1).
I True randomness is hard; use canonical ensemble



Cosmological selection: Method

2. Generate Monte Carlo decay chain
I Use branching ratios computed from instantons
I Restrict to single-flux decays
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Cosmological selection: Method

3. Record final flux configuration (n1, . . . ,nJ)

I Good statistics for each flux after a few thousand runs
I Obtain flux probabilities pi(n)



Cosmological selection: Results
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I Sharp contrasts with raw landscape, e.g.:
I first 30 fluxes all ≤ 2
I no fluxes > 4

I Hundreds of predictions, many with probability near 1
I Only 1080 vacua with Λ ∼ 10−123 (1 in 1041 selected)



Origin of cosmological selection effects
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I Large fluxes, and those
associated with
small-charge
membranes, are
particularly unstable

I They decay early in the
chain, and will not be
observed



General lessons

I Cosmological selection thins out the landscape,
I suppressing large classes of vacua and
I leading to strong predictions
I Some models can be ruled out by cosmological selection
I No “staggering” problem



Cosmological Selection Effects

Anthropic (or Entropic) Selection Effects



The basic question

What is the probability for vacuum X to be observed?



Observers in the causal diamond

I Weight each vacuum by
the number of
observers, or
observations, it contains

I In the causal diamond,
this number is finite

I But what is an
observer/observation?

I Trade “observers” for a
better defined quantity,
∆S.



The Causal Entropic Principle

I Observation requires free energy; must produce entropy
I Conjecture that on average, Nobservers ∝ ∆S
I Let ∆S(X ) be the matter entropy produced inside the

causal diamond, in vacuum X , since reheating
I Weight by ∆S:

PX ∝ PX ∆S



A statistical question

I What is the probability distribution for Λ?
I Restrict to the subset of the string landscape with low

energy physics identical to ours
I Only Λ varies

I By entropic weighting,

dP
d log Λ

∝ Λ ∆S(Λ)

I Computing ∆S(Λ) is an astrophysics problem



Main result: The probability distribution for Λ
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Our Λ is typical under this distribution [BHKP: hep-th/0702115]



Origin of this distribution

I Λ wants to be large by raw statistics
I But Λ should not dominate too early, or it will expel all

matter (and free energy) from the diamond
I The preferred Λ starts dominating around the time when

entropy production peaks
I This solves the coincidence problem
I With our low energy physics, entropy production peaks at
∼ 1010 yr.
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I This explains why Λ ∼ 10−123



Including more variables

I Galaxy formation plays no role in suppressing large Λ

I This bodes well for cases with variable δρ/ρ, . . .
I ∆S is dominated by IR from dust heated by starlight
I So, in vacua similar to ours, ∆S is sensitive to the

existence of galaxies, stars, and heavy elements
I This suggests that ∆S will be a good proxy for Nobservers



Summary

I The causal diamond provides a well-motivated regulator
for eternal inflation

I Cosmological selection thins out the BP landscape
I Many predictions, some counter to landscape statistics

I Observed Λ is in good agreement with anthropic weighting
in the causal diamond

I Weighting by entropy production is equally successful and
universally defined
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