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After this decoupling limit, the black hole is 
embedded in a proper theory of quantum 
gravity.

Since the black hole describes a normalizable
deformation of AdS, it should be dual to a state 
or density matrix in the dual CFT 



exp(−S ) Tr [ρO . . .O ] = 〈O . . .O 〉

ρ =

∑

e |E〉〈E|

S= -Tr(ρ log ρ)

[ρ, D̂] = 0

Tr(ρD) = 〈D̂〉 = D

classical geometries semiclassical states; 
definition = what?

black hole

black object, entropy S

bulk has isometry D

ADM quantum number 
associated to D 

BULK BOUNDARY



This is a map between quantum states and 
classical objects (geometries).

A well-known example of such a map is the map 
between quantum states and their corresponding 
classical phase space densities.

It is precisely this map that will allow us to map states into 
geometries in the ½ BPS sector of AdS3 and AdS5.



Phase space distributions (Wigner: arXiv:3303.0010)

For given ρ,                  is defined by 
requiring that for all operators A:

w (p, q)

∫

dp dq w (p, q)A(p, q) = Tr(ρA(p̂, q̂))

operator 
ordering

-Weyl ordering : Wigner distribution
-Reverse normal ordering: Husimi distribution

Semi-classical state:                 is independent of the choice 
of ordering prescription (as                              ).

w (p, q)

N → ∞,! → 0



½-BPS states in AdS5 – geometries classified by Lin, Lunin
and Maldacena

Smooth geometries:                    . Function u defines a droplet 
in the           -plane.

u ∈ {0, 1}

x , x



½-BPS states in N=4 U(N) SYM theory: given by Hilbert 
space of N free fermions in a harmonic oscillator potential.

Corley, Jevicki, Ramgoolam
BerensteinThese can be conveniently 

enumerated in terms of Young 
diagrams with N rows.

N

Mandal
Grant, Maoz, Marsano, Papadodimas, Rychkov
Takayama, Tsuchiya

By quantizing the phase space 
of smooth gravitational 
solutions we recover the 
fermionic description. This 
confirms that the           -
plane is the same as the phase 
space for the harmonic 
oscillator.

x , x



Proposal: 

State ρ One-particle phase space density  u(x , x )

Geometry

•Most states yield ambiguous`quantum foam’ geometries 
with string scale curvature

•Semiclassical states yield well-defined but still mildly 
singular space-times

•Can add geometries. Summing (coarse graining) over all 
states yields the `1/2-BPS’ black hole

Milanesi, O’Loughlin

Balasubramanian, JdB, Jejjala, Simon



For large N, all states will start to look the same and are 
difficult to distinguish from the ensemble average. 

This is in perfect agreement with the idea that collapsed 
heavy pure states are difficult to distinguish from each 
other and all look like a black hole.

Relevant theorem: all Young 
diagrams approach with 
probability one a fixed limit 
shape (cf crystal melting)

Vershik



½-BPS configurations for AdS3 x S3 x M4

½-BPS states: States in the Fock space of b1+b3 fermions 
and b0+b2+b4 bosons with L0=N.  (bi=dim Hi(M4)).

½-BPS geometries (Lunin-Mathur):

A =

∫

, dB = ∗ dA, Q =

∫

| !F (s)| ds

f = 1 +

∫

, f = 1 +

∫

describes a curve in the       spanned by x , . . . , xR



Quantization of the phase space of classical smooth solutions 
of supergravity shows that the modes       of 

!
F (s) = µ

∑

(

c e + c.c.

)

c Donos, Jevicki
Rychkov

become the creation and annihilation modes of the four 
bosons associated to 

State ρ phase space density  

Geometry

Alday, JdB, Messamah

f = 1+

∫

D
!
F (s)µ(!F (s))

∫

etc.



•Many results from AdS5 carry over to this case; in 
particular, almost all states look identical.

•The original classical geometries correspond to point in 
phase space and are therefore given by coherent states.

•Coarse graining over all states with              , or over all 
states weighted with           , yields the M=0 BTZ black 
hole.

•For M=0 BTZ find 

•The entropy of the associated stretched horizon scales like   
this is larger than the entropy           of M=0 BTZ and 
disagrees with the result of Lunin-Mathur. What is the right 
notion of stretched horizon?

L = N

e

f = Q

N

N



Richer set of possibilities: rotations in the       plane. R

Denote by                the modes of two bosons with 
quantum numbers ±1 under some                          . 

a , a

U (1) ⊂ SO(4)

Small rotating black hole ρ ∼ e

J =

∑

(a ) a −

∑

(a ) a

Typical state: (random)(a ) |0〉

Bose-Einstein 
condensate

Entropy: S ∼

√

N − J

N − J



Small black ring

Typical state: 

Bose-Einstein 
condensate

Entropy: 

ρ ∼ e

(random)(a ) |0〉

N −DJ

S ∼

√

N −DJ

Bena Kraus                                                 
Iizuka Shigemori
Balasubramanian Kraus Shigemori

•D: `dipole operator’. Its presence in the density matrix is 
supported by an analysis of the first law of thermodynamics.

•Not a conserved charge, not clear how to extend definition to 
interacting theory (cf giant graviton number).

•Reminiscent of non-local conserved charge.

D =

∑

(a ) a + . . .

Emparan; Copsey, Horowitz



Even more general: 

ρ = exp(−

∑

f(k)(a ) a + . . .)

Generic: Fine-tuned:
f(k)

k

f(k)

k
Metric depends only on N,J,D 
Example of no hair 

Multiple Bose-Einstein condensation 
Concentric black rings?



So far, no examples with macroscopic horizon. A lot of work 
has been done in order to find microstates in cases with less 
supersymmetry. Giusto, Mathur, Saxena, Srivastava, Potvin, Peet, Ford, 

Elvang, Emparan, Mateos, Reall, Bena, Kraus, Warner, Wang, 
Lunin, Balasubramanian, Berglund, Gimon, Levi, Cheng…..

Not many of these are asymptotically AdS. 
Denef, Gaiotto, Strominger, van den Bleeken, Yin

A large class of multi-center black holes/rings in 
AdS3xS2xCY, including many smooth solutions, can be 
obtained by taking a suitable decoupling limit of the 5D uplift 
of 4D multi-center BPS black hole solutions. Denef

Bates, Denef
Gaiotto, Strominger, Yin           



The 5D solutions are described in terms of harmonic functions

H = h+

∑

∈ H (CY,R)

where        labels the (D0,D2,D4,D6) charges of each of 
the centers. 

Γ

If the total D6-brane charge vanishes, we can take a 
decoupling limit where the 11d Planck length is sent 
to zero, while keeping the size of the 11th dimension, 
the masses of stretched membranes, and the size of 
the CY in 11d Planck units fixed. 

Denef, Moore     
Moore’s talk

JdB, El-Showk, Messamah

In this limit, h→0, except for                             which 
remains fixed. This constant is crucial in order to have a 
space which is asymptotically AdS3.

h ∈ H (CY,R)



Γ = (Γ ,Γ ,Γ ,Γ ) ∈ (H ,H ,H ,H )Write charges as

Define a pairing 〈Γ,Θ〉 =

∫

(Γ Θ − Γ Θ + Γ Θ − Γ Θ )

Then asymptotic AdS3 has mass and SU(2) angular 
momentum:

M = Γ − Γ (d Γ ) Γ

!
J =

∑

〈Γ ,Γ 〉

These define the quantum numbers in the dual N=(0,4) CFT.
Maldacena, Strominger, Witten

〈h,Γ 〉 +

∑

= 0

Consistency condition:



Because              centers that carry non-trivial D6-brane charge 
cannot be moved all the way to the boundary: honest bound 
states, part of the Higgs branch.

Cf: giant gravitons in AdS3 can be moved all the way to the 
boundary. 

h != 0

Simplest example: two-centered solution, one with D6-
brane charge +1, the other with D6-brane charge -1. 
These are distinguished by their angular momentum.

Relevant for `entropy enigma’, computation of elliptic genus 
of the CFT and connection to OSV.

Gaiotto, Strominger, Yin                                      
de Boer, Cheng, Dijkgraaf, Manschot, Verlinde
Denef, Moore



Dual description? Hint: look at thermodynamics. Naively 
looks like one needs                       potentials for the N-center 
case. 

N (2b + 2)

This suggests the following picture:
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TO DO:

•Explore space of solutions.

•How fine tuned are the multi-center solutions?

•Analyze space of smooth solutions. Phase space large 
enough to account for (a finite fraction) of the entropy of a 
macroscopic black hole?? Or are these smooth solutions all 
highly atypical? 

•Connection and corrections to OSV, implications for the 
partition function of the dual CFT.

•Understand `split RG flows’.

•Understand BMPV black hole in this context.



•Gravity is thermodynamic, a black hole is a 
thermodynamic description of an underlying large 
set of microstates.

•Almost all states in the dual ensembles are typical 
and very difficult to distinguish from each other 
(no hair)

•By adding more operators and potentials to the 
ensemble we can describe more elaborate black 
objects.

•In the limit where we include infinitely many 
operators the ensemble can become a coherent 
state, and by that time the dual geometry has 
become smooth and horizonless.

SUMMARY: RESOLVING THE BLACK HOLE


