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Introduction

One of the most striking results in the modern study of N = 1 supersymmetric
gauge theory was Seiberg’s discovery of an IR duality between two QCD-like
theories, both with Nf flavors of quarks (fundamental chiral superfields), but
with different gauge groups.

This discovery connects two quantum theories which at the classical level
have no resemblance to each other.

The two theories are

• SU(Nc) supersymmetric gauge theory with Nf flavours Qi, Q̃i, and no
superpotential.

• SU(NF −Nc) supersymmetric gauge theory with Nf flavours qi, q̃i, meson
fields Mij which are singlets of the gauge group, and superpotential Mijqiq̃j
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A popular way to study N = 1 supersymmetric gauge theories is to realize
them geometrically in string theory, as suspended brane constructions, D-
branes wrapping cycles in Calabi-Yau manifolds, orbifolds, and otherwise.

• Hanany-Witten

• S. Elitzur, A. Giveon and D. Kutasov

• B. Feng, A. Hanany and Y. H. He (toric duality ?)

• F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz and C. Vafa

They do not explain in a satisfying manner the superpotential data that is
necessary to make the dualities work.

The objective of this talk is to show how to overcome this obstacle so that
one can derive the (classical) superpotential of the dual theory from first
principles.
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Outline

• Field theories realized by IIb holomorphic branes on CY.

• Central charge and gauge couplings.

• Duality as change of basis.

• Brane categories and exact sequences.

• Seiberg’s original example.

• A self-consistency check.

• Tachyon dynamics and the dual superpotential.

• Applications.

• Outlook.
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Field theories realized by IIb holomorphic branes on CY.

• Given a collection of stacks of ‘linearly independent’ mutually supersym-
metric holomorphic D-branes on a CY three-fold M, Bi, we can construct
theories by wrapping branes on these cycles as B ∼

∑
NiBi.

• Each D-brane Bi is associated to a coherent sheaf on M.

• The massless spectrum of states between the D-branes is given by cal-
culating Extq(Bi, Bj) = H0,q(X, B∗

1 ⊗ B2). These are just holomorphic
q-forms, and q is the ghost charge. We assume Ext0(Bi, Bj) = 0 for
i 6= j.

• The category of sheaves has the Serre duality functor Extq(A, B) =
Extd−q(B, A)∗., so that we can just keep q < d/2 = 3/2.

• When taking into account the GSO projection Ext0 become vector mul-
tiplets, and Ext1 become chiral multiplets.

• The theories will have a gauge group
∏

U(Ni).
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Note:

All of the holomorphic data of the field theory is contained in the twisted
B-model (open) topological string theory of the system of branes.

Topological open strings are the massless (field theory) degrees of freedom.

The topological string theory correlation functions determine the superpoten-
tial of the theory. This is given by the holomorphic Chern-Simons action of
the configuration.

The rest of the physics is determined by Kahler data (e.g. if supersymmetry
is spontaneously broken by a configuration or not.)

6



Central charge and gauge couplings

Let us consider a BPS IIb brane wrapped around some cycle in the CY and
the transverse directions to the CY. Take a IIa brane wrapping the same cycle
in the CY, but which is a point in the transverse direction to the CY.

This second brane is a BPS particle in a compactification with N = 2 SUSY.
The tension is equal to the norm of the central charge

T = |Z(B)|

In the gauge theory one has

1

g2
B

= |Z(B)| ∼ vol(B); ζB ∼ ϕ(B) =
1

π
argZ(B).

for small ϕ(B), and it is determined by the Kahler data.

ζB is the FI D-term of the gauge group for brane B.

Two branes A, B are mutually supersymmetric if ϕ(B) = ϕ(A).
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Seiberg duality is related to the physics of the strong coupling region 1/g2
E → 0.

At the classical level this corresponds to going through zero volume or

Z(E) = 0

Since the central charge is complex, we can avoid this region, going around
a point Z(E) = 0 on a path with |Z(E)| >> 1 in Kahler moduli.

The path will take Z(E) → −Z(E). If we had a collection of branes Bi that
are mutually supersymmetric with E, then in the end, it is the antibrane of
E, Ē which is mutually supersymmetric with the Bi.

The field theory
∑

NiBi + NcE will not be described by supersymmetric field
theory in terms of the branes Bi, E after we take Z(E) → −Z(E)

We can think of the collection Bi, E as a choice of basis of fractional branes.
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Duality as change of basis

Given a collection of branes, Bi, E, which are not mutually supersymmet-
ric, they can form bound states which are supersymmetric. For example
B̂i = Bi + ciE.

If a set of branes Bi, E is almost supersymmetric, then a brane configuration
can be described as a supersymmetric field theory with small D-terms, and
one can do a field theory computation which determines the existence of B̂i

as a BPS brane.

When we take Z(E) → −Z(E) the branes B̂i are lighter than the branes Bi,
so they are better candidates for fractional branes.

The idea now is that the field theory duality is a change of basis

Bi, E → B̂i, Ē

determined by the change in Kahler data.

The charge of a given brane B does not change, but it’s expression in terms
of a basis does, ( as well as it’s stability). So

B =
∑

NiBi + NcE =
∑

NiBi + (
∑

Nici −Nc)Ē

Here we see the familiar shift Nc → S −Nc that characterizes N = 1 dualities.
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Brane categories and exact sequences

To understand duality we want to treat branes and anti-branes on the same
footing. The data we are interested in is determined by a topological string
theory which allows us to treat branes and anti-branes on the same footing.

This is done by replacing coherent sheaves with complexes of coherent sheaves
and going to the ”derived category”. (Douglas)

The standard notation for such a complex is

E−m
d−m−→E−m+1

d−m+1−→ . . .
d−1−→E0

d0−→E1
d1−→ . . .

dn−1−→En.

On a first approximation the cohomology of d is interpreted as the physical
brane represented by the complex. The most elementary example of this is

B
1−→B

which represents brane-anti brane anihilation by tachyon condensation.

One can also represent bound states of branes B1, B2 as the middle term in
an exact sequence

0 → B1 → B → B2 → 0
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The massless spectrum of strings between B and M can be found from the
long exact sequence

. . .0 → Ext0(M, B2) → Ext0(M, B) → Ext0(M, B1) (1)
→ Ext1(M, B2) → Ext1(M, B) → Ext1(M, B1) . . . . (2)

or it’s dual.

One can generalize the Extq to deal with complexes. Now the ghost charge
q gets an extra contribution from the grading of the branes.

Extq(B1, B2) ∼ ⊕n,mH(Extq+n−m(E1
n, E2

m))

The idea behind this shift is that when we break supersymmetry by chang-
ing ϕ(A) − ϕ(B) the bosonic partners of the fermions will get an additional
contribution to their mass

m2 ∼ q − 1 + ϕ(A)− ϕ(B)

so that they can become tachyonic.

In particular A and Ā differ in phase by a shift of ±1.
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Seiberg’s original example

We need to start with a set of branes that have the following quiver:

U(N1) U(N2) U(N3)

• Q̃ // • Q // •

B1 B2 B3

We will call this theory B = (N1, N2, N3).

Anomaly cancellation requires N1 = N3 and extra matter that connects N1

and N3, but we will ignore this for the argument.
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We can form the following bound states that break the gauge group to
U(1)(can be interpreted as ’fractional branes’):

B4 ∼ (1,1,0) B5 ∼ (0,1,1) B6 ∼ (1,1,1)

Each requires an obvious choice of D-terms to give SUSY vacua.

We are only interested in dualizing B2, so that we take ζ2 >> 0. Of the above
we can keep B1, B5 and B̄2 to make the new basis (B6 is a bound state of B1

and B5).

We can not use B4 because it is not supersymmetric for ζ2 >> 0.

In terms of the new basis we have

B = N1B1 + (N3 −N2)B̄2 + N3B5

This is exactly the dual gauge group predicted by Seiberg.
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The matter content

The brane B5 is a bound state

0 → B2 → B5 → B3

. Let us calculate the spectrum of open strings between B5 and B1.

In the field theory we consider the total brane B5+B1. There is one massless
quark Q̃, starting at B1 and ending at B5. In the dual theory this is invariant
under the gauge group of the B̄2 branes, and it has the right quantum numbers
to be the meson field of the dual theory. To find the field content associated
to brane B̄2 and B1 we need to shift the brane B2 by 1. This means we need
to shift

Ext1(B2, B1) → Ext2(B̄2, B1) ∼ Ext1(B1, B̄2)

so we reverse the arrows in the quiver.

Doing the exact sequence for Ext(B5, B2) and shifting by one, reverses the
arrows between node B2 and B3.

This produces the exact spectrum of the dual theory.
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0 → Ext0(B2, B2) // Ext0(B5, B2) // 0

0 // Ext1(B5, B2) // 0−→

0 // Ext2(B5, B2) // Ext2(B3, B2)−→

Ext3(B2, B2) // Ext3(B5, B2) // 0

The red arrow is a non-trivial connecting homomorphism.

In field theory this is just the Higgs mechanism. (Ext0,3 is the gauge group,
and Ext1,2 are matter).

We need to shift Ext0(B5, B2) → Ext1(B5, B̄2)

For the antibrane the shift

Ext0,3(B2, B2) → Ext1,41(B2, B̄2)

produces the brane anti-brane tachyons T, T̃ .
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A self consistency check

We have constructed the dual theory (except for the superpotential). It looks
as follows

U(N1) U(N3 −N2) U(N3)

• •
q̃

oo •q
oo

M //

The double dual should be the original theory. The dual theory is supposed
to have the superpotenatial

tr(qMq̃)

Consider the bound state 0 → B̄2 → B7 → B1 → 0, and the change of basis.
There should be no double dual ‘meson’ field.
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0 // 0 // Ext0(B5, B7) // 0−→

0 // Ext1(B5, B7) // Ext1(B5, B̄2)−→

Ext2(B5, B1) // Ext2(B5, B7) // 0−→

0 // Ext3(B5, B7) // 0

When we turn on the field q (form B7), we should have no massless matter
between B7 and B5. This requires a connecting homomorphism for the arrow
in red. This has to come from a superpotential term, which is expected in
the dual

tr(qMq̃)

We still need to prove this is the superpotential
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What connecting homomorphisms mean:

Ext0 → Ext1 and Ext2 → Ext3 are dual to each other. These take care of the
(super) Higgs mechanism: Gauge fields eat superfields to become massive
together.

Ext1 → Ext2 is the connecting homomorphism that takes care of giving masses
due to superpotential terms when we give vevs to some fields.

“Unification of gauge and superpotential dynamics”
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Tachyon dynamics and the dual superpotential.

How can we get the superpotential from first principles?

The superpotential is determined by the holomorphic Chern-Simons action.

The brane-antibrane system give rise to a holomorphic graded Chern-Simons
theory. NB2 + N ′B̄2 gives a U(N |N ′) structure. The tachyon is part of the
’generalized connection’.

In particular, tachyon condensation to eliminate cohomology requires terms

tr(T Q̃̃̄Q) + tr(T̃QQ̄)

. This also follows from U(N |N ′) symmetry.

For the dual theory M ∼ Q, q ∼ T and q̃ ∼¯̃Q. The term in blue is the dual
superpotential.
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Applications

One can generalize the simple example above to many other situations. One
needs to understand what BPS bound states can be form to obtain the new
basis.

In general one can show that all the possible configurations between the
various basis match.

One can deal with many examples in the literature:

• Kutasov’s SU(Nc) with NF flavours and and adjoint X with superpoten-
tial tr(Xk+1). This requires integrating out some fields which become
massive to get to the dual superpotential.

• More complicated quivers with various arrows between the nodes and
fairly generic superpotentials.

• The procedure described is a generalization of the Fourier-Mukai trans-
form.
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Outlook

• We have seen how dualities can be described in terms of brane-antibrane
systems. This is what the change of basis argument requires.

• Tachyons play a fundamental role in this derivation of duality.

• We have seen how string theory arguments allow one to derive (classical)
superpotentials for dual theories from first principles.

• Can one find new dualities with these methods?

• Can one generalize this procedure to include the SO/Sp groups?

• Can one understand the quantum duality between field theories from this
perspective (instantons and non-perturbative superpotentials)?
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