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What this talk is about

A major achievement of string theory is the counting of micro-states for a
class of asymptotically flat black holes [Vafa-Strominger’96]

I The entropy is obtained by counting states in the corresponding
string/D-brane system

I Remarkable precision tests including higher derivatives

No similar results for asymptotically AdS4 or AdS5 black holes until very

recently.



What this talk is about

In this talk, I review recent progress for AdSd black holes in diverse
dimensions. Using the AdS/CFT correspondence, the entropy is related
to a counting of states in the dual CFT.

Disclaimer I: despite holography, the story is still in its infancy.

• computational tools available for BPS black holes

• most of the comparisons are at large N

Disclaimer II: AdS3 is somehow special and well-studied so we will
consider d ≥ 4.



Generalities on AdS Black Holes



Holographic interpretation

Consider a BPS black hole in AdSd≥4. The entropy is a function of the
charges QI and a set of angular momenta Ji

SBH(QI , Ji ) = log n(QI , Ji )

Holography suggests that the entropy should be recovered by counting
states in the dual CFTd−1

ds2 =
dr2

r2
+ r2ds2

Md−2×R + . . . r � 1

set of charged spinful states

of the CFTd−1 on Md−2 × R

QI become charges under the global symmetries of the CFTd−1



Two interesting string theory classes of BPS black holes, distinguished by
supersymmetry algebra and holographic interpretation

• the boundary theory is just the SCFTd−1 on Sd−2 × R

• the boundary theory on Md−2 × R is also topologically twisted

characterized by non-zero magnetic fluxes for
graviphoton/ R-symmetry:

∫
Σ⊂M F ∈ 2πZ

Most manifest in AdS4 BH with horizon AdS2 × S2: dichotomy between
electrically and magnetically charged BHs first discussed in [Romans 92]



BPS partition function

Counting states with the same susy, charges and angular momenta

Z (∆I , ωi ) = TrQ=0

(
e i(QI ∆I +JiωI )

)
=
∑
QI ,Ji

n(QI , Ji )e
i(QI ∆I +Jiωi )

The entropy SBH(QI , Ji ) = log number of states

n(QI , Ji ) = eSBH(QI ,Ji ) =

∫
∆,ω

Z (∆I , ωi )e
−i(QI ∆I +Jiωi )

in the limit of large charges, by a saddle point, is a Legendre Transform

SBH(QI , Ji ) ≡ I(∆, ω) = logZ (∆I , ωi )−i(QI∆I+Jiωi ) ,
dI
d∆

=
dI
dω

= 0

PROBLEM: we have efficient tools for counting states preserving four real

supercharges. AdS black holes preserve two.



Witten index

It is easier to compute the supersymmetric partition function

Z susy
Md−2×S1 (∆I , ωi ) = Tr

(
(−1)F e i(QI ∆I +JiωI )e−β{Q,Q

†}
)

• superconformal index for SCFT on Sd−2 × S1
[Romelsberg 05; Kinney,

Maldacena, Minwalla, Raju 05]

• or topologically twisted index for twisted theories [Okuda, Yoshida 12;

Nekrasov, Shatashvili 14; Gukov, Pei 15; Benini, AZ 15]

Lower bound on entropy. Index = entropy if there are no large cancellations

between bosonic and fermionic ground states. In some cases true at large N.

Arguments for some asymptotically flat BH [Sen 09]



Magnetically charged black holes



Black holes in AdS4 × S7

Black holes in M theory on AdS4 × S7: [Cacciatori, Klemm 08; Dall’Agata, Gnecchi; Hristov,

Vandoren 10; Katmadas; Halmagyi 14; Hristov, Katmadas, Toldo 18]

• preserves two real supercharges (1/16 BPS)

• four electric qa and magnetic pa charges under U(1)4 ⊂ SO(8), one
angular momentum J in AdS4; only seven independent parameters

• entropy scales as O(N3/2)

We focus on J = 0: six-dimensional family of dyonic static black holes
with horizon AdS2 × S2 (or AdS2 × Σg )



Static black holes in AdS4 × S7

Entropy is a complicated function

SBH(pa, qa) ∼
√
I4(Γ, Γ,G ,G )±

√
I4(Γ, Γ,G ,G )2 − 64I4(Γ)I4(G )

I4 symplectic quartic invariant

Γ = (p1, p2, p3, p4, q1, q2, q3, q4) [Halmagyi 13]

G = (0, 0, 0, 0, g, g, g, g)

but it can be written as a Legendre transform

SBH(pa, qa) = logZ (∆a, pa)−
∑
a

i∆aqa

∣∣∣
crit

=
∑

a
ipa

∂W
∂∆a

− i∆aqa

∣∣∣
crit

gauged supergravity prepotentialW ∼
√

∆1∆2∆3∆4∑
∆a = 2π scalar fields at the horizon

• Attractor mechanism: [Ferrara, Kallosh, Strominger 96; Dall’Agata, Gnecchi 10]

• Example of entropy function. See also [Sen 05]



Dual perspective

Dual to ABJM on Σg × R with a twist on Σg parameterized by pa

U(1)4 ⊂ SO(8)
1

2π

∫
Σg

F a = pa ∈ Z

• Magnetic background for global symmetries: Landau levels on Σg

• Twisting condition
∑4

a=1 pa = 2− 2g

δψµ = ∇µε− i
4∑

a=1

Aa
µε︸ ︷︷ ︸

cancel spin connection

= 0 ε = constant on Σg.



The relevant index

Topologically twisted index

= QM Witten index

ZΣg×S1 (∆I , pa) = TrH

(
(−1)F e i

∑4
a=1 Qa∆ae−βHp

)
︸ ︷︷ ︸∑4

a=1 ∆a ∈ 2πZ

• magnetic charges pa enter in the Hamiltonian Hg, electric charges qa
introduced through chemical potentials ∆a

• number of fugacities equal to the number of conserved charges

,

→ AdS2: reduction to horizon quantum
mechanics
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Localization formula I

Topologically twisted index =⇒ computable in the UV

ZΣg×S1 (∆I , pa) =
ya=e i∆a

1

|W |
∑

m∈ Γh

∮
C

dx

2πix
Zint(m, x ; pa, ya)

classical piece Zcl = xkm

for a chiral multiplet Z1−loop =
∏
ρ

( √
xρya

1−xρya

)ρ(m)−pa+1−g

for a vector multiplet Z1−loop =
∏
α

(
1− xα

)1−g

[Localization formula: Benini, AZ 15; Closset, Kim, Willet 16]



Digression: TQFT and Bethe vacua

.

reduction to two-dimensional theory
(with all KK modes on S1)

Massive theory with a set of discrete vacua (Bethe vacua)
[Witten 92; Nekrasov, Shatashvili 09]

exp (W ′(x?)) = 1 W =
∑
ρ

Li2(xρya) + . . .

Many 3d and 4d supersymmetric partition functions can be written as a sum

over Bethe vacua [Closset, Kim, Willet 17]



Localization formula II - topological point of view

Sum over Bethe vacua

ZΣg×S1 (∆I , pa) =
∑
x?

Zcl+1-loop(m = 0, x?; pa, ya)

(
det
ij
∂i∂jW(x?)

)g−1

exp
(
W ′(x?)

)
= 1

[Okuda, Yoshida 12; Nekrasov, Shatashvili 14; Gukov, Pei 15; Benini, AZ 15; Closset-Kim-Willet 17]

For ABJM:

W =
x=e iu

N∑
i=1

k

2

(
ũ2
i − u2

i

)
+

N∑
i,j=1

[ ∑
a=3,4

Li2
(
e i(ũj−ui+∆a))−∑

a=1,2

Li2
(
e i(ũj−ui−∆a))]

Expectation: one Bethe vacuum dominates in the large N limit.

ui = i
√
Nti + vi ũi = i

√
Nti + ṽi
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√
Nti + ṽi
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I-extremization for static black holes in AdS4 × S7

In the large N limit [Benini-Hristov-AZ 15]

Won−shell =
2

3
iN3/2

√
2∆1∆2∆3∆4

S(pa, qa) = logZ (∆a, pa)−
∑
a

i∆aqa

∣∣∣
crit

=
∑

a
ipa

∂W
∂∆a

− i∆aqa

∣∣∣
crit

∑4
a=1 ∆a = 2π Re∆a ∈ [0, 2π]

• The on-shell superpotential W coincides with the prepotential of
the N = 2 gauged supergravity obtained by reducing on S7. The
formula above is the attractor mechanism



Generalisations

• Generalized to other black holes in M theory or massive type IIA. [Hosseini,

Hristov, Passias; Benini, Khachatryan, Milan; Azzurli, Bobev, Crichigno, Min, AZ 17; Bobev, Min, Pilch

18; Gauntlett, Martelli, Sparks; Hosseini, AZ 19]

general formula logZ(∆a, pa) =
∑

a pa
∂F

S3 (∆)

∂∆a

[Hosseini, AZ; Hosseini, Mekareeya ’16]

• Including subleading corrections in N [Liu, PandoZayas, Rathee, Zhao; Jeon, Lal 17; Liu,

PandoZayas, Zhou 18; Gang, Kim, PandoZayas 19]

• Localization in supergravity [Hristov, Lodato, Reys 17]

• Black holes and black strings in higher dimensions [Hosseini, Nedelin, AZ 16; Hong,

Liu 16; Hosseini, Yaakov, AZ 18; Crichigno,Jain,Willet 18; Hosseini, Hristov, Passias, AZ 18; Suh 18]

• Black hole thermodynamics: logZ = gravity on-shell action [Azzurli, Bobev,

Crichigno, Min, AZ 17; Halmagyi, Lal; CaboBizet, Kol, PandoZayas, Papadimitriou, Rathee 17]

• Case with angular momentum still to be worked out.



Electrically charged and rotating black holes



Rotating black holes in AdS5 × S5

Most famous BPS examples are asymptotic to AdS5 × S5

two angular momenta J1, J2 in AdS5 U(1)2 ⊂ SO(4) ⊂ SO(2, 4)

three electric charges QI in S5 U(1)3 ⊂ SO(6)

with a constraint F (Ji ,QI ) = 0. They must rotate and preserves two
supercharges.

SBH = 2π
√

Q1Q2 + Q2Q3 + Q1Q3 − 2c(J1 + J2) c = N2−1
4

[Gutowski-Reall 04; Chong, Cvetic, Lu, Pope 05; Kunduri, Lucietti, Reall; Kim, Lee, 06]

The boundary metric is S3 × R, no twist. The microstates correspond to states
of given angular momentum and electric charge in N = 4 SYM.

Recent examples of hairy black holes with more parameters [Markeviciute, Santos 18]



Entropy function for AdS5 black holes

• BPS entropy function [Hosseini,Hristov,AZ 17]

SBH(QI , Ji ) = −iπ(N2 − 1)
∆1∆2∆3

ω1ω2
− 2πi

( 3∑
I=1

QI∆I +
2∑

i=1

Jiωi

)∣∣∣∣
∆̄I ,ω̄i

with ∆1 + ∆2 + ∆3 − ω1 − ω2 = ±1

• From BH thermodynamics: chemical potentials ∆̄I , ω̄i can be
obtained in a suitable zero-temperature limit for a family of
supersymmetric Euclidean black holes [Cabo-Bizet, Cassani, Martelli, Murthy 18]

−iπ(N2 − 1)
∆1∆2∆3

ω1ω2
= on-shell action

The critical values ∆̄I , ω̄i are complex but, quite remarkably, the
extremum is a real function of the black hole charges.



Long standing puzzle

Entropy scales like O(N2) for QI , Ji ∼ N2.

• difficult to enumerate all 1/16 BPS states. Not enough of them? [Grant,

Grassi, Kim, Minwalla 08; Chang, Yin 13; Yokoyama 14]

• the superconformal index

Z(ωi ,∆I ) = Tr(−1)F e−β{Q,Q
†}e2πi(∆IQI +ωi Ji )

∼
∮

dzi
2πizi

∏
1≤i<j≤N

∏3
k=1 Γe(yk(zi/zj)

±1; p, q)

Γe((zi/zj)±1; p, q)

number of fugacities equal to the number of conserved charges:

p = e2πiω1 , q = e2πiω2 , yI = e2πi∆I
∏3

I=1 yI = pq

[Romelsberg 05; Kinney, Maldacena, Minwalla, Raju 05]

For real fugacities: logZ = O(1). Large cancellations between bosons
and fermions. [Kinney, Maldacena, Minwalla, Raju 05]
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The importance of being complex

However, the critical values ∆̄I , ω̄i of the BPS entropy function are
complex. Recent computations for the index

Z (ωi ,∆I ) = Tr(−1)F e−β{Q,Q
†}e2πi(∆IQI +ωiJi )

and related/modified quantities with complex fugacities suggest that

• phases may obstruct cancellations in the index

• Stokes phenomena in the complex plane

[Cardy limit: Choi, Kim, Kim, Nahmgoong] [See Kim’s talk]

[Modified index/partition function: Cabo-Bizet, Cassani, Martelli, Murthy]

[Large N: Benini, Milan 18]



The importance of being complex

In various limits, index with complex fugacities consistent with:

logZ(∆, ω) ∼ −iπ(N2 − 1)
∆1∆2∆3

ω1ω2
∆1 + ∆2 + ∆3 − ω1 − ω2 = ±1

• Large N limit (equal angular momenta)

Reduction on T 2

Two-dimensional Bethe vacua
[Benini, Milan 18]

• Cardy limit: ω1, ω2 → 0 with fixed ∆I . Large black holes:

QI ∼
1

ε2
Ji ∼

1

ε3
ω1, ω2 ∼ ε→ 0

[Choi, Kim, Kim, Nahmgoong 18; Honda; Arabi Ardehali 19] [See Kim’s talk]

Other saddles at smaller charges/other black holes? [See Kim’s talk]
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Generalisations

• With a modified index, Cardy limit generalizes to other 4d theories. Finite
N corrections. For equal charges:

logZ ∼
3∆−ω1−ω2=±1

2πi
∆3

ω1ω2
(3c − 5a) + 2πi

∆

ω1ω2
(a− c) + O(1)

[Generalize DiPietro-Komargodski 14][Kim, Kim, Song; Cabo-Bizet, Cassani, Martelli, Murthy; Amariti,

Garozzo, LoMonaco 19]

• Entropy functions for electrically charged and rotating BH also in AdS4,
AdS6 and AdS7 [Hosseini, Hristov, AZ; Choi, Hwang, Kim, Nahmgong 18; Cassani, Papini 19]

• Some index computations in higher dimensions [Choi, Kim, Kim, Nahmgoong 18;

Choi, Kim; Kantor, Papageorgakis, Richmond 19]

• Near BPS entropy functions [Larsen, Nian, Zeng 19]



Some general comments



Entropy controlled by anomalies?

• Asymptotically flat black holes in string theory [Strominger, Vafa 96]

logZ ∼ π2

6β
cCFT =⇒

Legendre
SBH = 2π

√
ncCFT

6

• AdS5 black holes also controlled by anomalies both at large N and
in Cardy limit. For N = 4 SYM

logZ = −4πi
(ω1 + ω2 ± 1)3

27ω1ω2
aCFT︸ ︷︷ ︸

equal charges

• same quantity appears as supersymmetric Casimir energy. Hidden
modularity? [Hosseini, Hristov, AZ 17; Cabo-Bizet, Cassani, Martelli, Murthy 18]



Some more universality?

We can embed BPS black holes in all maximally supersymmetric AdSd≥4

backgrounds

• M theory on AdS4 × S7

• type IIB on AdS5 × S5

• massive IIA on AdS6 ×W S4

• M theory on AdS7 × S4

=⇒

ABJM theory

N = 4 SYM

5d UV fixed point

(2, 0) theory

Entropy controlled by anomalies in even dimensions and sphere partition
functions in odd dimensions



electrically charged and rotating BH
[BH solutions: Chow; Chong, Gibbons, Cvetic, Lu, Pope; Hristov, Katmadas, Toldo to appear]

AdS4 × S7 F(∆a) =
√

∆1∆2∆3∆4 logZ(∆a, ωi ) = 4
√

2N3/2

3

√
∆1∆2∆3∆4

ω1

∆1 + ∆2 + ∆3 + ∆4 = 2 ∆1 + ∆2 + ∆3 + ∆4 + ω1 = 2π

AdS5 × S5 F(∆a) = ∆1∆2∆3 logZ(∆a, ωi ) = −i N
2

2
∆1∆2∆3
ω1ω2

∆1 + ∆2 + ∆3 = 2 ∆1 + ∆2 + ∆3 + ω1 + ω2 = 2π

AdS6 ×W S4 F(∆a) = (∆1∆2)3/2 logZ(∆a, ωi ) ∼ N5/2 (∆1∆2)3/2

ω1ω2

∆1 + ∆2 = 2 ∆1 + ∆2 + ω1 + ω2 = 2π

AdS7 × S4 F(∆a) = (∆1∆2)2 logZ(∆a, ωi ) = −i N
3

24
(∆1∆2)2

ω1ω2ω3

∆1 + ∆2 = 2 ∆1 + ∆2 + ω1 + ω2 + ω3 = 2π

[Disclaimer: normalizations and signs for sake of exposition]

[See ”Generalisations” slides for refs]



magnetically charged BH and black strings

AdS4 × S7 F(∆a) =
√

∆1∆2∆3∆4 logZ = − 2
√

2N3/2

3

∑4
a=1 pa

∂F(∆)
∂∆a

∆1 + ∆2 + ∆3 + ∆4 = 2 ∆1 + ∆2 + ∆3 + ∆4 = 2π

AdS5 × S5 F(∆a) = ∆1∆2∆3 logZ = −N2

2β

∑3
a=1 pa

∂F(∆)
∂∆a

∆1 + ∆2 + ∆3 = 2 ∆1 + ∆2 + ∆3 = 2π

AdS6 ×W S4 F(∆a) = (∆1∆2)3/2 logZ ∼ N5/2∑2
a,b=1 pap̃b

∂2F(∆)
∂∆a∂∆b

∆1 + ∆2 = 2 ∆1 + ∆2 = 2π

AdS7 × S4 F(∆a) = (∆1∆2)2 logZ ∼ N3

β

∑2
a,b=1 pap̃b

∂2F(∆)
∂∆a∂∆b

∆1 + ∆2 = 2 ∆1 + ∆2 = 2π

[Note: AdS5 and AdS7 refer to black strings in Cardy limit]
[See ”Generalisations” slides for refs]



Similar results for more complicated CFTs at large N suggest:

• 3d: F(∆) ∼ FS3 (∆) trial sphere partition function

[Hosseini, AZ; Hosseini, Mekareeya]

• 4d: F(∆) ∼ a(∆) ∼ TrR(∆)3 trial a-central charge

[Hosseini, Nedelin, AZ 16; Hosseini, Hristov, AZ 18; Kim, Kim, Song; Amariti, Garozzo, LoMonaco 19]

F(∆) can be also related to

• the twisted superpotential on the dominant Bethe vacuum

• the prepotential of the relevant gauged supergravity

and similarly for higher dimensions. [See ”Generalisations” slides for refs]



Conclusions

Puzzles remain

• Many different approaches and intricate structure of saddles in AdS5;
other black holes?

• Comparison for general AdS4 × SE7 black holes. Large N limit not always
known.

and a long way to go

• finite N corrections

• extremal non-supersymmetric and near-BPS black holes?

But the main message of this talk is that there is still a lot of interesting
physics in AdS black holes.


	AdS5 and AdS7 black holes

