

String Amplitudes, Topological Strings and the Omega-deformation

Strings @ Princeton 26 - 06 - 2014

Ahmad Zein Assi

CERN

String Amplitudes, Topological Strings and the Omega-deformation

Strings @ Princeton 26 - 06 - 2014

Based on work with

I. Antoniadis

I. Florakis

S. Hohenegger

K. S. Narain

Ahmad Zein Assi

CERN

1302.6993 [hep-th]

1309.6688 [hep-th]

1406.xxxx [hep-th]

Introduction & Motivations

- Topological String: subsector of String Theory
 - Twisted version of type II

Free energy Fg = physical coupling $<(R_{.})^{2}(T_{.})^{2g-2}>$

Antoniadis, Gava, Narain, Taylor (93')

Witten (88')

Bershadsky, Ceccotti, Ooguri, Vafa (93')

Introduction & Motivations

- Topological String: subsector of String Theory
 - Twisted version of type II

Witten (88')

- Free energy Fg = physical coupling $<(R_)^2(T_)^{2g-2}>$

Antoniadis, Gava, Narain, Taylor (93')

Bershadsky, Ceccotti, Ooguri, Vafa (93')

• Geometric engineering of (Ω -deformed) supersymmetric gauge theories

Katz, Klemm, Vafa (96')

$$\sum_{g=0}^{\infty}g_s^{2g-2}F_g\Big|_{ ext{field theory}}=\log Z_{ ext{Nek}}(\epsilon_+=0,\epsilon_-=g_s)$$
 Nekrasov et al.

Nekrasov et al. (02')

Introduction & Motivations

- Topological String: subsector of String Theory
 - Twisted version of type II

Witten (88')

- Free energy Fg = physical coupling $<(R_)^2(T_)^{2g-2}>$

Antoniadis, Gava, Narain, Taylor (93')

Bershadsky, Ceccotti, Ooguri, Vafa (93')

• Geometric engineering of (Ω -deformed) supersymmetric gauge theories

Katz, Klemm, Vafa (96')

$$\sum_{g=0}^{\infty} g_s^{2g-2} F_g \Big|_{\text{field theory}} = \log Z_{\text{Nek}}(\epsilon_+ = 0, \epsilon_- = g_s)$$

Nekrasov et al. (02')

- Refinement: one-parameter extension of F_q
 - Does it exist?Coupling in the string effective action?

- Ω-background
 - $\epsilon_{\perp} \leftrightarrow SU(2)_{\perp}$ rotation, $\epsilon_{\perp} \leftrightarrow SU(2)_{\perp}$ rotation
 - T_{_} → anti-self-dual graviphoton field strength
 - $F_+ \rightarrow$ self-dual gauge field strength

- Ω-background
 - $\epsilon_{\perp} \leftrightarrow SU(2)_{\perp}$ rotation, $\epsilon_{\perp} \leftrightarrow SU(2)_{\perp}$ rotation
 - T_⊥ → anti-self-dual graviphoton field strength
 - F₊ → self-dual gauge field strength
- Consider $F_{g,n} = \langle (R_{-})^2(T_{-})^{2g-2}(F_{+})^{2n} \rangle$
 - Heterotic on K₃ x T²: vector partner of T² Kähler modulus
 - Contributions start at one-loop

- Ω-background
 - $\epsilon_{\underline{}}$ ↔ SU(2) rotation, $\epsilon_{\underline{}}$ ↔ SU(2), rotation
 - T_⊥ → anti-self-dual graviphoton field strength
 - $F_+ \rightarrow$ self-dual gauge field strength
- Consider $F_{g,n} = \langle (R_{-})^{2}(T_{-})^{2g-2}(F_{+})^{2n} \rangle$
 - Heterotic on K₃ x T²: vector partner of T² Kähler modulus
 - Contributions start at one-loop
- Explicit exact evaluation at one-loop in Heterotic

$$\mathcal{F}(\epsilon_{-}, \epsilon_{+}) = \sum_{g, n \geq 0} \epsilon_{-}^{2g} \epsilon_{+}^{2n} \mathcal{F}_{g, n} \xrightarrow{\text{Field Theory}} \int_{0}^{\infty} \frac{dt}{t} \frac{-2\cos(2\epsilon_{+}t)}{\sin(\epsilon_{-} - \epsilon_{+})t \sin(\epsilon_{-} + \epsilon_{+})t} e^{-\mu t}$$

- Ω-background
 - $\epsilon_{\underline{}}$ ↔ SU(2) rotation, $\epsilon_{\underline{}}$ ↔ SU(2), rotation
 - T_⊥ → anti-self-dual graviphoton field strength
 - F₊ → self-dual gauge field strength
- Consider $F_{g,n} = \langle (R_{-})^{2}(T_{-})^{2g-2}(F_{+})^{2n} \rangle$
 - Heterotic on K₃ x T²: vector partner of T² Kähler modulus
 - Contributions start at one-loop
- Explicit exact evaluation at one-loop in Heterotic

$$\mathcal{F}(\epsilon_{-}, \epsilon_{+}) = \sum_{g, n \geq 0} \epsilon_{-}^{2g} \epsilon_{+}^{2n} \mathcal{F}_{g, n} \xrightarrow{\text{Field Theory}} \log Z_{\text{Nek}}^{\text{Pert}} (\epsilon_{+}, \epsilon_{-})$$

- Non-perturbative corrections
 - Instantons in the Ω -background: deformed ADHM
 - Gauge instantons: Dp-Dp+4 configuration
 - Closed string background: T_{_} and F₊

- Non-perturbative corrections
 - Instantons in the Ω -background: deformed ADHM
 - Gauge instantons: Dp-Dp+4 configuration
 - Closed string background: T_{_} and F₊
- Compute Ω-deformed ADHM action
 - Take $\alpha' \rightarrow o$ limit

- Non-perturbative corrections
 - Instantons in the Ω -background: deformed ADHM
 - Gauge instantons: Dp-Dp+4 configuration
 - Closed string background: T_{_} and F_{_}
- Compute Ω-deformed ADHM action
 - Take $\alpha' \rightarrow o$ limit
- Evaluate the instanton path-integral

$$\sum_{q,n} \epsilon_{-}^{2g} \epsilon_{+}^{2n} \mathcal{F}_{g,n}^{Inst.} \Big|_{\text{f.t.}} = \log \langle e^{-\mathcal{S}_{\text{ADHM}}(\epsilon_{+},\epsilon_{-},A)} \rangle = \log Z_{\text{Nek}}^{\text{NP}}(\epsilon_{+},\epsilon_{-})$$

- Non-perturbative corrections
 - Instantons in the Ω -background: deformed ADHM
 - Gauge instantons: Dp-Dp+4 configuration
 - Closed string background: T₋ and F₊
- Compute Ω-deformed ADHM action
 - Take $\alpha' \rightarrow o$ limit
- Evaluate the instanton path-integral

$$\left. \mathcal{F}_{g,n} \right|_{\text{field theory}} = \mathcal{F}_{g,n}^{\text{Nek}}(\epsilon_+, \epsilon_-)$$

- Explicit breaking of holomorphicity
 - Related to the compactness of the CY

- Explicit breaking of holomorphicity
 - Related to the compactness of the CY
- Non-compact CY for
 - R-symmetry current
 - Decoupling of hypers

Huang, Kashani-Poor, Klemm, Vafa, etc.

Define generating function refined topological invariants

- Explicit breaking of holomorphicity
 - Related to the compactness of the CY
- Non-compact CY for
 - R-symmetry current
 - Decoupling of hypers

Huang, Kashani-Poor, Klemm, Vafa, etc.

- Define generating function refined topological invariants
- Use the generic CY compactification + appropriate limit

- Explicit breaking of holomorphicity
 - Related to the compactness of the CY
- Non-compact CY for
 - R-symmetry current
 - Decoupling of hypers

Huang, Kashani-Poor, Klemm, Vafa, etc.

- Define generating function refined topological invariants
- Use the generic CY compactification + appropriate limit
- $F_{g,n}$ satisfies a generalised holomorphic anomaly equation (\dot{a} la Klemm, Walcher, etc.)

Accident? Coincidence?

- Background of anti-self-dual graviphotons + selfdual T-vectors = consistent string theory uplift of the Ω-background
 - Perturbative Nerkrasov partition function = one-loop effective action of generalized F-terms (in the field theory limit)
 - Non-perturbative part = tree-level effective action of a Dp-D(p+4) bound state

Accident? Coincidence?

- Background of anti-self-dual graviphotons + selfdual T-vectors = consistent string theory uplift of the Ω-background
 - Perturbative Nerkrasov partition function = one-loop effective action of generalized F-terms (in the field theory limit)
 - Non-perturbative part = tree-level effective action of a Dp-D(p+4) bound state
- Generalised holomorphic anomaly equations

Accident? Coincidence?

- Background of anti-self-dual graviphotons + selfdual T-vectors = consistent string theory uplift of the Ω-background
 - Perturbative Nerkrasov partition function = one-loop effective action of generalized F-terms (in the field theory limit)
 - Non-perturbative part = tree-level effective action of a Dp-D(p+4) bound state
- Generalised holomorphic anomaly equations
- Promising candidate for a worldsheet realization of the refined topological string

String Amplitudes, Topological Strings and the Omega-deformation Thank You!

Strings @ Princeton 26 - 06 - 2014

Ahmad Zein Assi

CERN