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10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl
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(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

Planck

BICEP
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FIG. 4: Comparison of several predictions for the 150 GHz signal versus the reported Bicep2 ⇥ Bicep2 and the preliminary
Bicep2 ⇥ Keck measurements. The predictions are a combination of the dust polarization signal and the predicted lensing
signal for standard cosmological parameters. Panel (a) is based on DDM-P1, which assumes that the dust polarization signal
is proportional to the dust intensity (extrapolated from 353 GHz) times the mean polarization fraction (based on our CIB-
corrected map; see section III). The band represents the 1� countours derived from a set of 48 DDM-P1 models. Panel (b) shows
DDM-P2, with polarization fractions from our CIB-corrected map, and polarization direction based on starlight measurements,
the PSM, or [33]. Panel (c) uses the column density of neutral hydrogen in the Bicep2 region inferred from the optical depth
at 353 GHz to estimate the dust foreground. In this panel, the band reflects the uncertainty in the extrapolation of the scaling
relation to low column densities as well as the uncertainty in the rescaling from 353 GHz to 150 GHz.

this region has been selected by the Bicep2 team for its low dust extinction, few starlight polarization data have
been collected within the field. However, we found seven significant detections (P/�P > 1) along sightlines to stars
at least 100 pc above the Galactic plane. Two of them are for the same star, but observed by di↵erent teams, with
both observations above 5�. The polarization angle of the dust emission derived from the latter is 154.5�. The mean
and median angles derived from all significant detections in the region are respectively 171.1� and 160.4�, in good
agreement with that derived from the 5� detections. In a first class of models, we thus take the polarization angle
to be constant across the patch, and explore a range of values consistent with starlight polarization data, taking the
average dust emission polarization angle to be 160�, and explore the e↵ect of varying this angle by 10�.
In a second class of models, we again take the polarization angle to be constant across the patch, but use the

average polarization angle from the PSM. We consider a third class of models, in which we use polarization angles
derived from the PSM after smoothing the maps to 1 or 5 degrees. Finally, we consider models based on [33] and
vary the zero levels of the polarization and intensity maps within errors of the calibration.
The first two panels of Fig. 4 show the range of dust B-mode amplitudes compatible with each model added to the

lensed E-mode signal. The DDM-P1/DDM-P2 envelopes correspond to the 1� contours based on a suite of forty-eight
DDM-P1/DDM-P2 models that di↵er by their choice of polarization angles and map zero-levels, as discussed above.
DDM-P1 and DDM-P2 lead to consistent predictions, and the uncertainty envelope on each estimate encompasses
the Bicep2 and Bicep2 ⇥ Keck data points in the five bins used in the Bicep2 analysis.

B. Estimate from HI Column Density

The Planck collaboration has reported a strong correlation between Hi column density and the amplitude of the
dust polarization signal along a given line of sight [21]. We use this relationship to estimate the polarization signal
in the Bicep2 region. Hi column density can be inferred from the Planck 353 GHz dust opacity map according to
NHI = 1.41⇥ 1026 cm�2 ⌧353 [28]. Using this relation, we find NHI = (1.50± 0.07)⇥ 1020 cm�2 in the Bicep2 region.4

Inserting this value into the relation between NHI and dust polarization amplitude and using the appropriate modified
blackbody SED [19], at 150 GHz we obtain polarized dust emission power estimates at ` = 100 of 0.021 ± 0.014µK2

for `(`+ 1)CEE
` /2⇡ and 0.015 ± 0.010µK2 for `(`+ 1)CBB

` /2⇡.

4 While Ref. [21] was based on an older version of the Planck dust model, we consistently work with version 1.20.

Flauger, Hill & Spergel: Revised Estimates of the level of dust in the BICEP patch

Mortonson & Seljak: Constraints after marginalizing over foregrounds

The interpretation of the BICEP2 results

• Q and U from Boulanger,  T from nominal Planck data, 
CMB removed, all zero levels set from LAB HI data

Bernard’s polarization fraction

does not look like Bernard’s map, p=0.092 in BICEP patch

0 20%

Flauger: CIB corrected polarization fraction



P linear
δ (z, k) =

[

g(z)

g(0)

]2

P linear
δ (0, k), (10)

where the linear growth factor g(z) is approximately
given by [61]

g(z) ≈
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m
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70
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(11)

Here the parameters Ωz
m and Ωz

Λ are those at redshift
z, given by the present values Ωm and ΩΛ through the
relations

Ωz
m =

[

H0

H(z)

]2

Ωm(1 + z)3, (12)

Ωz
Λ =

[

H0

H(z)

]2

ΩΛ, (13)

with H(z) given by equation (5).
The power spectrum Pnl

δ (k) needed in equation (3) is
the nonlinear one rather than the linear one P l

δ(k) given
by equation (10). Based on a pioneering idea of Hamilton
et al. [62], a series of approximations [59,63–65] have been
developed for approximating the former using the latter.
In terms of the dimensionless power

∆2(k) ≡
4π

(2π)3
k3Pδ(k), (14)

the linear power ∆l on scale kl is approximately related
to the nonlinear power ∆nl on a smaller nonlinear scale
knl. We use the Peacock & Dodds’ approximation [65],
where this mapping is given by

∆2
nl(knl) = fnl

[

∆2
l (kl)

]

(15)

and

kl =
[

1 + ∆2
nl(knl)

]−1/3
knl, (16)

with a fitting function

fnl(x) = x

⎧

⎪

⎨

⎪

⎩

1 + Bβx + (Ax)αβ

1 +
[

(Ax)αg(0)3

(V x1/2)

]β

⎫

⎪

⎬

⎪

⎭

1/β

, (17)

parametrized by

A = 0.482(1 + neff/3)−0.947, (18)

B = 0.226(1 + neff/3)−1.778, (19)

α = 3.310(1 + neff/3)−0.224, (20)

β = 0.862(1 + neff/3)−0.287, (21)

V = 11.55(1 + neff/3)−0.423. (22)

Here g(0) is the linear growth factor of equation (11)
evaluated at z = 0 and neff ≡ d lnP l

δ(k)/d ln kl is the
effective logarithmic slope of the linear power spectrum
evaluated at kl. Since this slope should be evaluated
for a model without baryonic wiggles, we compute neff

using an the Eisenstein & Hu fitting function with baryon
oscillations turned off.

III. EXPERIMENTAL DATA USED

A. CMB data

Figure 1 shows the 135 CMB measurements which are
used in our analysis. Compared to the data set we used
in [30], we add the new measurements from the Cosmic
Background Imager (CBI) mosaic [66], the Very Small
Array (VSA) [67] and Archeops [68]. For CBI, we use the
year 2000 observations of three pairs of mosaic fields [66]
but not the deep fields, because it is still unclear whether
their signal is dominated by CMB or other effects such
as SZ effect [69]. The Boomerang results updated last
week [70] and the Acbar results [71] became available too
recently for inclusion in this analysis, but we do include
them in the online combined power spectrum described
below.

FIG. 1. CMB data used in our analysis. Error bars do not

include calibration or beam errors which allow substantial vertical

shifting and tilting for some experiments (these effects are included

in our analysis).

We combine these measurements into a single set of 28
band powers shown in Figure 2 and Table 1 using the
method of [30] as improved in [31], including calibration
and beam uncertainties, which effectively calibrates the
experiments against each other. Since our compressed
band powers dℓ are simply linear combinations of the
original measurements, they can be analyzed ignoring the
details of how they were constructed, being completely
characterized by a window matrix W:

⟨di⟩ =
∑

ℓ

WiℓδT
2
ℓ , (23)

where δT 2
ℓ ≡ ℓ(ℓ + 1)Cℓ/2π is the angular power spec-

trum. This matrix is available at

3

www.hep.upenn.edu/∼max/cmb/cmblsslens.html
together with the 28 band powers dℓ and their 28×28 co-
variance matrix. The data ℓ-values and effective ℓ-ranges
in Figure 2 and Table 1 correspond to the median, 20th
and 80th percentile of the window functions W. Com-
paring Table 1 with the older results from [31], we find
that the only major change is a shallower rise towards
the 1st peak due to Archeops, which is able to help cal-
ibrate Boomerang and other small-scale experiments by
connecting them with the COBE. Specifically, δTℓ has
increased by about 10% at ℓ ∼ 50 and decreased about
5% for ℓ ∼ 100 − 200, thereby nudging the first peak a
tad to the right.

FIG. 2. Combination of data from Figure 1. These error bars

include the effects of beam and calibration uncertainties, which

cause long-range correlations of order 10% over the peaks. In addi-

tion, points tend to be anti-correlated with their nearest neighbors,

typically at the level of 10-20%. The curve shows our model best

fitting CMB+LSS data (second last column in Table 2).

Table 1 – Band powers combining the information from CMB data
from Figure 1. The 1st column gives the ℓ-bins used when com-
bining the data, and can be ignored when interpreting the results.
The 2nd column gives the medians and characteristic widths of the
window functions as detailed in the text. The error bars in the
3rd column include the effects of calibration and beam uncertainty.
The full 28×28 correlation matrix and 28×2000 window matrix are
available at www.hep.upenn.edu/ ∼ max/cmb/cmblsslens.html.

ℓ-Band ℓ-window δT 2 [µK2]

2 − 2 2+0
−0 49 ± 310

3 − 5 4+3
−1

877 ± 308

6 − 10 8+3
−2

782 ± 218

11 − 30 16+9
−4 832 ± 151

31 − 50 40+10
−10 1113 ± 244

51 − 75 60+14
−13

1120 ± 255

76 − 100 87+10
−12 2139 ± 279

101 − 125 110+11
−17 2767 ± 340

126 − 150 135+12
−14

3461 ± 443

151 − 175 161+21
−23 4122 ± 529

176 − 225 196+24
−34 4900 ± 410

226 − 275 246+23
−44

5079 ± 441

276 − 325 297+24
−28 3164 ± 359

326 − 375 348+22
−23 1892 ± 265

376 − 425 398+20
−22

1468 ± 213

426 − 475 450+21
−22 1793 ± 219

476 − 525 499+21
−22 2037 ± 257

526 − 575 549+21
−23

2306 ± 268

576 − 625 600+21
−22 1932 ± 267

626 − 675 649+21
−22 1790 ± 259

676 − 725 700+20
−21

1948 ± 293

726 − 775 749+22
−23

1428 ± 334

776 − 825 801+23
−23 2322 ± 438

826 − 1000 888+52
−46

2067 ± 261

1001 − 1200 1093+56
−65

953 ± 300

1201 − 1400 1299+54
−55 638 ± 291

1401 − 1600 1501+54
−55

924 ± 368

1601 −∞ 1700+51
−53

189 ± 273

B. LSS data

Measurements of P (k) from Galaxy redshift surveys
have recently improved in both quality and quantity, and
the Sloan Digital Sky Survey is set to continue this trend.
In this paper, we use the power spectrum from the 2dF-
GRS [72] as measured by [73]. We model the galaxy bias
as a scale-independent constant b, and therefore discard
all 2dF measurements with k ≥ 0.3h/Mpc to minimize
our sensitivity to nonlinear clustering and nonlinear bias
effects.
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Fig. 5.— The SPT bandpowers, WMAP bandpowers, and best-fit ⇤CDM theory spectrum shown with dashed (CMB) and solid
(CMB+foregrounds) lines. The bandpower errors do not include beam or calibration uncertainties.

Fig. 6.— The one-dimensional marginalized constraints on the six cosmological parameters in the baseline model. The constraints from
SPT+WMAP are shown by the blue solid lines, while the constraints from WMAP alone are shown by the orange dashed lines.

– 37 –

Fig. 8.— The final angular power spectrum, l(l + 1)Cl/2π, obtained from the 28 cross-power spectra,
as described in §5. The data are plotted with 1σ measurement errors only which reflect the combined
uncertainty due to noise, beam, calibration, and source subtraction uncertainties. The solid line shows the
best-fit ΛCDM model from Spergel et al. (2003). The grey band around the model is the 1σ uncertainty
due to cosmic variance on the cut sky. For this plot, both the model and the error band have been binned
with the same boundaries as the data, but they have been plotted as a splined curve to guide the eye. On
the scale of this plot the unbinned model curve would be virtually indistinguishable from the binned curve
except in the vicinity of the third peak.

Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b) and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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On quantifying and resolving the BICEP2/Planck tension over gravitational waves
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(Dated: April 2, 2014)

The recent BICEP2 measurement of primordial gravity waves (r = 0.2+0.07
�0.05) appears to be in

tension with the upper limit from WMAP (r < 0.13 at 95% CL) and Planck (r < 0.11 at 95%
CL). We carefully quantify the level of tension and show that it is very significant (around 0.1%
unlikely) when the observed deficit of large-scale temperature power is taken into account. We show
that measurements of TE and EE power spectra in the near future will discriminate between the
hypotheses that this tension is either a statistical fluke, or a sign of new physics. We also discuss
extensions of the standard cosmological model that relieve the tension, and some novel ways to
constrain them.

PACS numbers:

The BICEP2 collaboration’s potential detection of B-
mode polarization in the cosmic background radiation
(CMB) has justifiably ignited enormous excitement, sig-
nalling as it may the opening of a powerful new window
onto the earliest moments of the big bang [1]. The impli-
cations are profound, including a possible confirmation
of cosmic inflation and exclusion of rival explanations for
the origin and structure of the cosmos.

As the BICEP2 collaboration were careful to empha-
size, there is some tension between their value of the pa-
rameter r which controls the amplitude of the gravita-
tional wave signal, relative to other experiments. BI-
CEP2 detected B-mode polarization corresponding to
r = 0.2+0.07

�0.05 (or r = 0.16+0.06
�0.05 after foreground subtrac-

tion), as compared to upper bounds from the large-scale
CMB temperature power spectrum: r < 0.13 (WMAP)
or r < 0.11 (Planck) at 95% CL [2, 3]. It is the pur-
pose of this note to quantify this discrepancy in a simple
manner, to point out that measurements of CMB polar-
ization E-modes will either sharpen or resolve it in the
near future, and to explore cosmological interpretations.

In Fig. 1, we show current measurements of the tem-
perature power spectrum CTT

l , illustrating a deficit of
power at low `. This deficit was highlighted as an impor-
tant anomaly by the Planck team [4]. However, taken
alone, it is still compatible (at the 1% level) with cosmic
variance and thus may be explained as a statistical fluc-
tuation due to our only having access to a limited sample
of the universe. BICEP2’s detection of B-mode polariza-
tion, if correctly interpreted as being due to primordial
gravitational waves, implies an additional contribution to
the large-scale temperature anisotropies. This makes it
harder to explain away the observed deficit as a statistical
fluke.

We quantify this problem as follows. We compute
likelihood functions L(r) for r inferred from WMAP,
Planck, and BICEP2 (Fig. 2). Throughout this paper,
we use “WMAP” as a shorthand for the combination
of datasets WMAP+SPT+BAO+H0, and “Planck” as

FIG. 1: Current measurements of the CMB temperature
power spectrum, from Planck (open circles), WMAP (closed
circles), ACT (squares) and SPT (triangles). Error bars in-
clude noise variance only; the shaded region represents cosmic
variance. There is a small deficit of power on large angular
scales relative to an r = 0 model (solid curve) which becomes
more statistically significant if r = 0.2 as BICEP2 suggests
(dashed curve).

a shorthand for Planck+(WMAP polarization). Notice
that the Planck likelihood peaks at negative r. Of course,
r < 0 does not make sense physically, but negative values
of r may be taken to provide a reasonable parameteriza-
tion of a possible deficit in low ` power, which avoids a

posteriori choices in the weighting in `.

We find that the Planck r-likelihood peaks 1.6� below
zero, indicating a deficit of large-scale power. The power
deficit has been extensively studied by the Planck collab-
oration [3, 4]; its formal statistical significance can be as
high as 3� if an a posteriori choice of `-range is made.
Note that the preference for negative r is hidden when
an r � 0 prior is imposed throughout the analysis (as
is typically done when quoting upper limits on r from
WMAP/Planck). Indeed, a primary purpose of this note
is to point out that the tension between Planck and BI-
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10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

Planck

Adding tensors makes it 
worse



From the bottom up:  The simplest models 	


!

• Inflationary background:  scale invariant	



• Fluctuations of the clock:  no fluctuations in the 
composition, or “local” non-Gaussianities	



• Simple history:  Large tensors	



• Theory of the fluctuations valid all the way to the symmetry 
braking scale: cs = 1, no “equilateral” non-Gaussianities

10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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The parameters of the scalar and tensor power spectra may
be calculated approximately in the framework of the slow-roll
approximation by evaluating the following equations at the value
of the inflation field �⇤ where the mode k⇤ = a⇤H⇤ crosses the
Hubble radius for the first time. (For a nice review of the slow-
roll approximation, see for example Liddle & Lyth (1993)). The
number of e-folds before the end of inflation, N⇤, at which the
pivot scale k⇤ exits from the Hubble radius, is

N⇤ =
Z te

t⇤
dt H ⇡ 1

M2
pl

Z �e

�⇤
d�

V
V�
, (12)

where the equality holds in the slow-roll approximation, and
subscript ‘e’ refers to the end of inflation.

The coefficients of Eqs. 10 and 11 at their respective leading
orders in the slow-roll parameters are given by

As ⇡ V
24⇡2M4

pl✏V
(13)

At ⇡ 2V
3⇡2M4

pl

(14)

ns � 1 ⇡ 2⌘V � 6✏V (15)
nt ⇡ �2✏V (16)

dns/d ln k ⇡ �16✏V⌘V + 24✏2V + 2⇠2V (17)

dnt/d ln k ⇡ �4✏V⌘V + 8✏2V (18)

d2ns/d ln k2 ⇡ �192✏3V + 192✏2V⌘V � 32✏V⌘2
V

� 24✏V⇠2V + 2⌘V⇠
2
V + 2$3

V ,
(19)

where the slow-roll parameters ✏V and ⌘V are defined in Eqs. 5
and 6, and the higher order parameters are defined as follows

⇠2V =
M4

plV�V���
V2 , (20)

and

$3
V =

M6
plV

2
�V����

V3 . (21)

In single field inflation with a standard kinetic term, as dis-
cussed here, the tensor spectrum shape is not independent from
the other parameters. The slow-roll paradigm implies a tensor-
to-scalar ratio, at the pivot scale, of

r =
Pt(k⇤)
PR(k⇤)

⇡ 16✏ ⇡ �8nt , (22)

referred to as the consistency relation. This consistency relation
is also useful to understand how r is connected to the evolution
of the inflaton:

��

Mpl
⇡ 1p

8

Z N

0
dN
p

r . (23)

The above relation, called the Lyth bound (Lyth, 1997), im-
plies that an inflaton variation of the order of the Planck mass
is needed to produce r & 0.01. Such a threshold is useful to
classify large and small field inflationary models with respect to
the Lyth bound.

2.3. Ending inflation and the epoch of entropy generation

The greatest uncertainty in calculating the perturbation spectrum
predicted from a particular inflationary potential arises in estab-
lishing the correspondence between the comoving wavenumber
today, and the inflaton energy density when the mode of that
wavenumber crossed the Hubble radius during inflation (Kinney
& Riotto, 2006). This correspondence depends both on the infla-
tionary model and on the cosmological evolution from the end
of inflation to the present.

After the slow-roll stage, �̈ becomes as important as the cos-
mological damping term 3H�̇. Inflation ends gradually as the
inflaton picks up kinetic energy so that w is no longer slightly
above �1, but rather far from that value. We may arbitrarily
deem that inflation ends when w = �1/3 (the value dividing
the cases of an expanding and a contracting comoving Hubble
radius), or, equivalently, at ✏V ⇡ 1, after which the epoch of
entropy generation starts. Because of couplings to other fields,
the energy initially in the form of scalar field vacuum energy
is transferred to the other fields by perturbative decay (reheat-
ing), possibly preceded by a non-perturbative stage (preheating).
There is considerable uncertainty about the mechanisms of en-
tropy generation, or thermalization, which subsequently lead to
a standard w = 1/3 equation of state for radiation.

On the other hand, if we want to identify some k⇤ today with
the value of the inflaton field at the time this scale left the hori-
zon, Eq. 12 needs to be matched to an expression that quantifies
how much k⇤ has shrunk relative to the size of the horizon be-
tween the end of inflation and the time that mode re-enters the
horizon. This quantity depends both on the inflationary potential
and the details of the entropy generation process, and is given by

N⇤ ⇡ 71.21 � ln
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where ⇢end is the energy density at the end of inflation, ⇢th is
an energy scale by which the Universe has thermalized, a0H0 is
the present horizon scale, Vhor is the potential energy when the
present horizon scale left the horizon during inflation, and wint
characterizes the effective equation of state between the end of
inflation and the energy scale specified by ⇢th. In predicting the
primordial power spectra at observable scales for a specific in-
flaton potential, this uncertainty in the reheating history of the
Universe becomes relevant and can be taken into account by al-
lowing N⇤ to vary over a range of values. Note that wint is not
intended to provide a detailed model for entropy generation, but
rather to parameterize the uncertainty regarding the expansion
rate of the Universe during this intermediate era. Nevertheless,
constraints on wint provide observational limits on the uncertain
physics during this period.

The first two terms of Eq. 24 are model independent, with
the second term being roughly 5 for k⇤ = 0.05 Mpc�1. If ther-
malization occurs rapidly, or if the reheating stage is close to
radiation-like, the magnitude of the last term in Eq. 24 is . 1.
For most reasonable inflation models, the fourth term isO(1) and
the third term ⇠ �10, motivating the commonly assumed range
50 < N⇤ < 60. Nonetheless, more extreme values on both ends
are in principle possible (Liddle & Leach, 2003). In the figures
of Sect. 4 we will mark the range 50 < N⇤ < 60 to guide the
reader’s eye.

28.4.1 No Shift Symmetry

In the absence of any special symmetries, the potential in large-field inflation becomes sensitive

to an infinite series of Planck-suppressed operators. The physical interpretation of these terms

is as follows: as the inflaton expectation value changes, any other fields � to which the inflaton

couples experience changes in mass, self-coupling, etc. In particular, any field coupled with at least

gravitational strength to the inflaton experiences significant changes when the inflaton undergoes a

super-Planckian excursion. These variations of the � masses and couplings in turn feed back into

changes of the inflaton potential and therefore threaten to spoil the delicate flatness required for

inflation. Note that this applies not just to the light degrees of freedom, but even to fields with

masses near the Planck scale: integrating out Planck-scale degrees of freedom generically (i.e., for

couplings of order unity) introduces Planck-suppressed operators in the e↵ective action. For nearly

all questions in particle physics, such operators are negligible, but in inflation they play an important

role.

The particular operators which appear are determined, as always, by the symmetries of the low-

energy action. As an example, imposing only the symmetry � ! �� on the inflaton leads to the

following e↵ective action:

Le↵(�) = �1

2
(@�)2 � 1

2
m2�2 � 1

4
��4 �

1X

p=1

⇥
�p�

4 + ⌫p(@�)2
⇤✓ �

Mpl

◆2p

+ · · · . (357)

Unless the UV theory enjoys further symmetries, one expects that the coe�cients �p and ⌫p are of

order unity. Thus, whenever � traverses a distance of order Mpl in a direction that is not protected

by a suitably powerful symmetry, the e↵ective Lagrangian receives substantial corrections from an

infinite series of higher-dimension operators. In order to have inflation, the potential should of

course be approximately flat over a super-Planckian range. If this is to arise by accident or by fine-

tuning, it requires a conspiracy among infinitely many coe�cients, which has been termed ‘functional

fine-tuning’ (compare this to the eta problem which only requires tuning of one mass parameter).

28.4.2 Shift Symmetry

There is a sensible way to control this infinite series of corrections: one can invoke an approximate

symmetry that forbids the inflaton from coupling to other fields in any way that would spoil the

structure of the inflaton potential. Such a shift symmetry,

� ! � + const. , (358)

protects the inflaton potential in a natural way.

In the case with a shift symmetry, the action of chaotic inflation [108]

Le↵(�) = �1

2
(@�)2 � �p �p , (359)

with small coe�cient �p is ‘technically natural’. However, because we require that this symmetry

protects the inflaton even from couplings to Planck-scale degrees of freedom, it is essential that

the symmetry should be approximately respected by the Planck-scale theory – in other words, the
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Shift symmetry forbids these terms

Symmetry needs to be respected by quantum gravity.

During slow-roll evolution, r(N) doesn’t evolve much and one may obtain the following approximate

relation [27]

��

Mpl
= O(1) ⇥

⇣ r

0.01

⌘1/2
, (221)

where r(Ncmb) is the tensor-to-scalar ratio on CMB scales. Large values of the tensor-to-scalar ratio,

r > 0.01, therefore correlate with �� > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are
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, (222)
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, (223)

where

" = �d ln H

dN
. (224)

The horizon crossing condition k = aH makes (222) and (223) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is

r ⌘ �2
t

�2
s

= 16 "? . (225)

13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices

ns � 1 ⌘ d ln �2
s

d ln k
, nt ⌘ d ln �2

t

d ln k
. (226)

We split this into two factors
d ln �2

s

d ln k
=

d ln �2
s

dN
⇥ dN

d ln k
. (227)

The derivative with respect to e-folds is

d ln �2
s

dN
= 2

d ln H

dN
� d ln "

dN
. (228)

The first term is just �2" and the second term may be evaluated with the following result from

Appendix D
d ln "

dN
= 2(" � ⌘) , where ⌘ = �d ln H,�

dN
. (229)

The second factor in Eqn. (227) is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + ln H . (230)
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The origin of the seeds of structure

The idea that the source of fluctuations are vacuum 
fluctuations of a slowly rolling scalar field which served 
as the clock that determined when inflation ends (ie 
slow-roll inflation) is only tested through our study of 
non-Gaussianities. In this area Planck has made 
tremendous progress.  After Planck we can say that this 
idea has survived non-trivial tests.  However a 
significant fraction of parameter space is still 
unexplored. 	
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Did super-horizon modes  ever produce locally observable 
differences that modulate the equation of state?

Were fluctuations converted into curvature fluctuations at 
the beginning/during the hot big bang? 
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TodayDecouplingBBN
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Summary
There are several interesting thresholds we want to cross 
observationally to improve our understanding of the epoch 
during which the seeds of structure were created. 	


!

Our experimental colleagues have arrived to the “gravity 
wave” threshold. 	


!

The non-Gaussianity threshold is further out but is 
hopefully achievable. 	


!

There is reason to hope the coming decades will be as 
interesting as the previous ones. 


