Gauge interactions and topological phases of matter

Kazuya Yonekura, Kavli IPMU

Based on a work [1604.06184] with Yuji Tachikawa

Classification of QFTs

Classification of all possible QFTs : too difficult

Instead, let's consider a very crude classification

• Classification of IR limit of QFTs with mass gap and no topological degrees of freedom (i.e., **nothing?**)

turned out to be very rich!

SPT phases

How can "nothing" be nontrivial? Symmetry Protected Topological (SPT) phases:

Assume { mass gap with a unique vacuum some global symmetry H

- Theory A \neq Theory B : encounter phase transition
- Theory $\mathbf{B}\sim$ Theory C : can avoid phase transition

The IR partition function

The IR limit of gapped QFTs with symmetry H :

Observables:

partition functions Z under background H fields

Theory $A \neq$ Theory B if Z(Theory A) $\neq Z$ (Theory B)

SPT phases are believed to be classified by the IR limit of partition functions.

e.g.
$$\log Z = \int \frac{ik}{4\pi} B dB$$
 (*B*: background H field)

Anomaly inflow

"Anomaly inflow" from both sides of the boundary and some massless or topological degrees of freedom appear on the boundary.

e.g.
$$\log Z = \int \frac{ik}{4\pi} B dB \longrightarrow$$
 boundary chiral fermions

Anomaly inflow

The boundary theory needs to match anomalies, but sometimes a variety of theories can be realized.

Example: topological superconductor

$$u\in\mathbb{Z}\$$
copies of massive majorana fermion in 3+1 dim. $\mathcal{L}=-rac{1}{2}\Psi^T C(\gamma^\mu\partial_\mu+m)\Psi$

H = time reversal symmetry

 $\rightarrow m$ is real: either positive or negative.

• At the free level, we get $\nu \in \mathbb{Z}$ boundary fermions if bulk has $\nu \in \mathbb{Z}$ massive fermions.

- At the free level, we get $\nu \in \mathbb{Z}$ boundary fermions if bulk has $\nu \in \mathbb{Z}$ massive fermions.
- However, classification of partition function is done by \mathbb{Z}_{16} In other words, $\nu=16$ must be trivial.

- At the free level, we get $\nu \in \mathbb{Z}$ boundary fermions if bulk has $\nu \in \mathbb{Z}$ massive fermions.
- However, classification of partition function is done by \mathbb{Z}_{16} In other words, $\nu=16$ must be trivial.
- More generally, the boundary can be TQFT without any fermions for arbitrary $\nu \in \mathbb{Z}_{16}_{10/30}$

A variety of boundary theories

To get the variety of boundary theories, we need interacting theories

Interactions

What interaction?

- Large 4-fermi interaction (in lattice for d>2).
- Gauge interaction

Where?

- Boundary
- Bulk

Interactions

What interaction?

- Large 4-fermi interaction (in lattice for d>2).
- Gauge interaction
- Where?
 - Boundary
 - •Bulk 🔶

Our work considers strongly coupled bulk field theories.

For other cases, see many references including

[Fidkowski-Kitaev,2009],[Wang-Wen,2013],[Seiberg-Witten,2016],[Witten,2016],.....

(many apologies for this very incomplete list)

Contents

- 1. Introduction
- 2. Strongly coupled bulk systems
- 3. Applications
- 4. Summary

Set up

Explicitly, a gauge group G is coupled to some massive bulk fermions (and scalars).

$$-\frac{1}{4g^2}(F_{\mu\nu})^2 - \Psi D\Psi - m\Psi\Psi - |D_{\mu}H| - \mu^2|H|^2$$

The scalars can be infinitely heavy and decoupled:

$$\mu^2 \to +\infty$$

15/30

Does the gauge theory give the same IR SPT phase as the free fermion system?

Free v.s. Strongly coupled

$$-\frac{1}{4g^2}(F_{\mu\nu})^2 - \Psi D\Psi - m\Psi\Psi - |D_{\mu}H| - V(H)$$

$$V(H) = +M^2|H|^2 + |H|^4 \quad \begin{array}{c} \text{Confining phase:} \\ \text{strongly coupled} \end{array}$$

$$V(H) = -M^2|H|^2 + |H|^4 \quad \begin{array}{c} \text{Higgs phase:} \\ \text{almost free fermions} \end{array}$$

They can be smoothly connected without phase transition if some conditions are satisfied.

Condition 1: topology of gauge group

We need matter field H in the fundamental representation. [Banks,Rabinovici,1979] [Fradkin,Shenker,1979]

Color flux tubes of gauge fields are screened by the pair creation of fundamental matter H.

For the fundamental matter to exist, the gauge group must be simply connected.

$$\pi_1(G) = 0$$

<u>Condition 1: topology of gauge group</u>

Actually, if $\pi_1(G) \neq 0$, there is nontrivial TQFT in bulk. Contradict the assumptions of SPT phases [Aharony, Seiberg, Tachikawa, 2013] [Tachikawa,2014]

Example:

 $G = SU(2)/\mathbb{Z}_2 = SO(3)$ would give bulk topological \mathbb{Z}_2 gauge theory.

To avoid topological degrees of freedom, we also impose

$$\pi_0(G) = 0$$

Condition 2: theta angle

$$-\frac{1}{4g^2}(F_{\mu\nu})^2 - \Psi D\Psi - m\Psi\Psi$$
Integrate out

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4g_{\text{eff}}^2} (F_{\mu\nu})^2 + \frac{\theta_{\text{eff}}}{64\pi^2} F_{\mu\nu} F_{\rho\sigma} \epsilon^{\mu\nu\rho\sigma}$$
$$\theta_{\text{eff}} = \begin{cases} 0 & m > 0\\ \pi t & m < 0 \end{cases}$$

massive fermions

 $t\,$: Dynkin index of the representation of fermions.

Condition 2: theta angle

For the IR limit to have a unique vacuum, we must impose

 $\theta_{\rm eff} = 0 \mod 2\pi$

If $\theta_{\rm eff} = \pi$, the time-reversal symmetry is spontaneously broken.

```
[Dashen,1971]
[Baluni,1979]
[Witten,1980]
```

Contradict the assumptions of SPT phases

So we must require that the fermion representation satisfies

$$\theta_{\rm eff} = \pi t \in 2\pi\mathbb{Z}$$

21/30

Summary of conditions

For the gauge interaction to preserve the IR SPT phase, (i.e., a unique vacuum preserving symmetry H)

•
$$\pi_0(G) = \pi_1(G) = 0$$

• $\theta_{\text{eff}} = \pi t = 0 \mod 2\pi$

One can directly show that the partition function Z of the gauge theory is the same as the free fermion theory up to continuous deformation.

Contents

- 1. Introduction
- 2. Strongly coupled bulk systems
- 3. Applications
- 4. Summary

Topological superconductor (1)

We want to demonstrate explicitly that $\nu = 16$ is trivial.

Topological superconductor (1)

 $\mathcal{N}=2$ SUSY SU(2) theory with $N_f=4$

• There are 16 fermions contained in quarks.

$$\nu = 2N_c N_f = 16$$

• We change the quark mass m from positive to negative.

(We also introduce constant SUSY breaking terms.)

Topological superconductor (1)

This explicitly shows that $\nu = 16$ is really trivial.

(An approach based on boundary gauge theory; see [Witten,2016]) 26/30

Topological superconductor (2)

What boundary theory can we get other than massless fermions?

Topological superconductor (2)

 $\mathcal{N} = 1$ pure Super-Yang-Mills with gaugino mass

Condition: $t_{adj} = h_G^{\vee} \in 2\mathbb{Z}, \ \pi_0(G) = \pi_1(G) = 0$

Contents

- 1. Introduction
- 2. Strongly coupled bulk systems
- 3. Applications
- 4. Summary

Summary

• Gauge interaction is a powerful way to obtain a variety of boundary theories of bulk SPT phases.

• Bulk gauge interaction preserves SPT phases if $\pi_0(G) = \pi_1(G) = 0$ $\theta_{\text{eff}} = \pi t \in 2\pi\mathbb{Z}$