Gauge interactions and topological phases of matter

Kazuya Yonekura, Kavli IPMU

Based on a work [1604.06184] with Yuji Tachikawa

Classification of QFTs

• Classification of all possible QFTs : too difficult

Instead, let's consider a very crude classification

• Classification of IR limit of QFTs with mass gap and no topological degrees of freedom (i.e., **nothing?**)

turned out to be very rich!

SPT phases

How can "nothing" be nontrivial? Symmetry Protected Topological (SPT) phases:

Assume • mass gap with a unique vacuum • some global symmetry H *{*

- Theory $A \neq T$ heory B : encounter phase transition
- Theory B \sim Theory C : can avoid phase transition

The IR partition function

The IR limit of gapped QFTs with symmetry H :

Observables:

partition functions Z under background H fields

Theory $A \neq$ Theory B if $Z(Theory A) \neq Z(Theory B)$

SPT phases are believed to be classified by the IR limit of partition functions.

e.g.
$$
\log Z = \int \frac{ik}{4\pi} B dB
$$
 (*B*: background H field)

Anomaly inflow

"Anomaly inflow" from both sides of the boundary and some massless or topological degrees of freedom appear on the boundary.

e.g.
$$
\log Z = \int \frac{ik}{4\pi} B dB
$$
 to boundary chiral fermions

Anomaly inflow

The boundary theory needs to match anomalies, but sometimes a variety of theories can be realized.

Example: topological superconductor

$$
\nu \in \mathbb{Z} \text{ copies of massive majorana fermion in 3+1 dim.} \\ \mathcal{L} = -\frac{1}{2} \Psi^T C (\gamma^\mu \partial_\mu + m) \Psi
$$

 $H =$ time reversal symmetry

 \rightarrow m is real: either positive or negative.

• At the free level, we get $\nu \in \mathbb{Z}$ boundary fermions if bulk has $\nu \in \mathbb{Z}$ massive fermions.

- At the free level, we get $\nu \in \mathbb{Z}$ boundary fermions if bulk has $\nu \in \mathbb{Z}$ massive fermions.
- However, classification of partition function is done by \mathbb{Z}_{16} In other words, $\nu = 16$ must be trivial.

- At the free level, we get $\nu \in \mathbb{Z}$ boundary fermions if bulk has $\nu \in \mathbb{Z}$ massive fermions.
- However, classification of partition function is done by \mathbb{Z}_{16} In other words, $\nu = 16$ must be trivial.
- 10/30 • More generally, the boundary can be TQFT without any fermions for arbitrary $\nu \in \mathbb{Z}_{16}$

A variety of boundary theories

To get the variety of boundary theories, we need interacting theories

Interactions

What interaction?

- •Large 4-fermi interaction (in lattice for d>2).
- Gauge interaction

Where?

- •Boundary
- •Bulk

Interactions

What interaction?

- •Large 4-fermi interaction (in lattice for d>2).
- Gauge interaction

Where?

•Boundary

• Bulk

Our work considers strongly coupled bulk field theories.

For other cases, see many references including

[Fidkowski-Kitaev,2009],[Wang-Wen,2013],[Seiberg-Witten,2016],[Witten,2016],……..

/ 30 13 (many apologies for this very incomplete list)

Contents

- 1. Introduction
- 2. Strongly coupled bulk systems
- 3. Applications
- 4. Summary

Set up

We consider strongly coupled bulk systems with • mass gap with a unique vacuum • some global symmetry H (=time reversal) *{*

Explicitly, a gauge group G is coupled to some massive bulk fermions (and scalars).

$$
-\frac{1}{4g^2}(F_{\mu\nu})^2 - \Psi D\Psi - m\Psi\Psi - |D_{\mu}H| - \mu^2|H|^2
$$

The scalars can be infinitely heavy and decoupled:

$$
\mu^2\to +\infty
$$

15/30

Does the gauge theory give the same IR SPT phase as the free fermion system?

Free v.s. Strongly coupled

$$
-\frac{1}{4g^2}(F_{\mu\nu})^2 - \Psi D \Psi - m\Psi \Psi - |D_{\mu}H| - V(H)
$$

$$
V(H) = +M^2|H|^2 + |H|^4
$$
 Confining phase:
strongly coupled

$$
V(H) = -M^2|H|^2 + |H|^4
$$
 Higgs phase:
almost free fermions

They can be smoothly connected without phase transition if some conditions are satisfied.

Condition 1: topology of gauge group

We need matter field H in the fundamental representation. [Banks,Rabinovici,1979] [Fradkin,Shenker,1979]

Color flux tubes of gauge fields are screened by the pair creation of fundamental matter H .

For the fundamental matter to exist, the gauge group must be simply connected.

$$
\pi_1(G)=0
$$

Condition 1: topology of gauge group

Actually, if $\pi_1(G) \neq 0$, there is nontrivial TQFT in bulk. [Aharony,Seiberg,Tachikawa,2013] [Tachikawa,2014] **Example 15 Contradict the assumptions of SPT phases**

Example:

 $G = SU(2)/\mathbb{Z}_2 = SO(3)$ would give bulk topological \mathbb{Z}_2 gauge theory.

To avoid topological degrees of freedom, we also impose

$$
\pi_0(G)=0
$$

Condition 2: theta angle

$$
-\frac{1}{4g^2}(F_{\mu\nu})^2 - \Psi D\Psi - m\Psi\Psi
$$
Integrate out massive fermions

$$
\mathcal{L}_{\text{eff}} = -\frac{1}{4g_{\text{eff}}^2} (F_{\mu\nu})^2 + \frac{\theta_{\text{eff}}}{64\pi^2} F_{\mu\nu} F_{\rho\sigma} \epsilon^{\mu\nu\rho\sigma}
$$

$$
\theta_{\text{eff}} = \begin{cases} 0 & m > 0 \\ \pi t & m < 0 \end{cases}
$$

t : Dynkin index of the representation of fermions.

Condition 2: theta angle

For the IR limit to have a unique vacuum, we must impose

 $\theta_{\text{eff}}=0\;\bmod 2\pi$

If $\,\theta_{\text{eff}}=\pi$, the time-reversal symmetry is spontaneously broken.

```
[Dashen,1971]
 [Baluni,1979]
 [Witten,1980]
```
◆ Contradict the assumptions of SPT phases

So we must require that the fermion representation satisfies

$$
\theta_{\rm eff} = \pi t \in 2\pi \mathbb{Z}
$$

21/30

Summary of conditions

For the gauge interaction to preserve the IR SPT phase, (i.e., a unique vacuum preserving symmetry H)

$$
\begin{aligned}\n\bullet \qquad \pi_0(G) &= \pi_1(G) = 0 \\
\bullet \qquad \theta_{\text{eff}} &= \pi t = 0 \mod 2\pi\n\end{aligned}
$$

One can directly show that the partition function Z of the gauge theory is the same as the free fermion theory up to continuous deformation.

Contents

- 1. Introduction
- 2. Strongly coupled bulk systems
- 3. Applications
- 4. Summary

Topological superconductor (1)

We want to demonstrate explicitly that $\nu = 16$ is trivial.

Topological superconductor (1)

 $\mathcal{N}=2$ SUSY SU(2) theory with $N_f=4$

• There are 16 fermions contained in quarks.

$$
\nu=2N_cN_f=16
$$

• We change the quark mass m from positive to negative.

(We also introduce constant SUSY breaking terms.)

Topological superconductor (1)

This explicitly shows that $\nu = 16$ is really trivial.

26/30 (An approach based on boundary gauge theory; see [Witten,2016])

Topological superconductor (2)

What boundary theory can we get other than massless fermions?

Topological superconductor (2)

 $N = 1$ pure Super-Yang-Mills with gaugino mass

Condition:
$$
t_{\text{adj}} = h_G^{\vee} \in 2\mathbb{Z}
$$
, $\pi_0(G) = \pi_1(G) = 0$

Contents

- 1. Introduction
- 2. Strongly coupled bulk systems
- 3. Applications
- 4. Summary

Summary

• Gauge interaction is a powerful way to obtain a variety of boundary theories of bulk SPT phases.

• Bulk gauge interaction preserves SPT phases if $\pi_0(G) = \pi_1(G) = 0$ $\theta_{\text{eff}} = \pi t \in 2\pi\mathbb{Z}$