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c>1

Cannot be rational, because RCFT always 
contains an extended chiral algebra: extra 
holomorphic currents that are Virasoro 
primaries.



c>1

Cannot be free orbifolds, because they also 
contain extra (higher spin) currents.

Q: What do we know about 2D unitary, 
compact CFTs with no conserved current 
primaries (of any spin)? 

Expected to be ubiquitous: e.g. holographic 
dual to “generic” 3d gravity theory in AdS3. 

Can we construct such a CFT?  



c>1Q: What do we know about 2D unitary, 
compact CFTs with no conserved current 
primaries (of any spin)? 

Expected to be ubiquitous: e.g. holographic 
dual to “generic” 3d gravity theory in AdS3. 

Can we construct such a CFT?  

Use exactly marginal deformations?



c>1Q: What do we know about 2D unitary, 
compact CFTs with no conserved current 
primaries (of any spin)? 

Expected to be ubiquitous: e.g. holographic 
dual to “generic” 3d gravity theory in AdS3. 

Can we construct such a CFT?  

Use exactly marginal deformations?
Try (2,2) SCFT, gauge away R-current? 
Nope, still have conserved higher spin 
currents of spin 3 and higher…



c>1Q: What do we know about 2D unitary, 
compact CFTs with no conserved current 
primaries (of any spin)? 

Expected to be ubiquitous: e.g. holographic 
dual to “generic” 3d gravity theory in AdS3. 

Can we construct such a CFT?  

Use exactly marginal deformations?
Bosonic NLSM on CY? Perturbatively, need 
infinitely many fine tunings…existence of 
fixed point questionable…



c>1Q: What do we know about 2D unitary, 
compact CFTs with no conserved current 
primaries (of any spin)? 

Expected to be ubiquitous: e.g. holographic 
dual to “generic” 3d gravity theory in AdS3. 

Can we construct such a CFT?  

No more tricks in my bag …
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A YUGE gap in our knowledge of 2d CFTs 

Either we are missing important constraints 

Or we have been ignorant about the vast 
majority of 2d CFTs… 

Most likely the latter.
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Conformal Bootstrap in 2D

In principle, modular invariance of torus 1-point 
functions combined with crossing relation of 
sphere 4-point functions for all Virasoro primaries 
define a consistent CFT. [BPZ,Friedan-Shenker, Segal, Moore-Seiberg]

For now, we investigate the consequence of 
modular invariance of the partition function and 
the crossing relation of 4-point function separately. 
Unitarity will be assumed throughout this talk.
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Modular Bootstrap 
[Hellerman, Friedan-Keller, Qualls-Shapere]

Assuming absence of conserved currents and c>1, 
the torus partition function admits character 
decomposition:

We simply impose the positivity of              and 
modular invariance of             , namely,

and that the spin takes integer values

What sort of constraints are there on the weights 
and degeneracy of the primaries?
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Modular Bootstrap 

Seek linear functionals       with the property that

If such a linear functional is found, we then deduce 
the existence of a certain low dimension primary, 
and possibility constraints on the degeneracy of 
such primaries. And much more…
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Modular Bootstrap 

Seek linear functionals       with the property that

We proceed numerically using semidefinite programming, 
implemented with SDPB [Simmons-Duffin]
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Bounds on the gap in scaling dimension

A kink: 
c=4, gap=1 8 free fermions with GSO projection  

(despite conserved currents, partition function can be 
formally decomposed into non-degenerate characters with 
positive coefficients, due to twist-1 primaries)
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Bounds on the gap of scalar primaries

Another kink: 
c=8, scalar gap=2

8 compact bosons at 
holomorphic factorization point



Bounds on the gap of scalar primaries 

… that disappear at c=25 !?
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[Belavin, Polyakov, Zamolodchikov, Rattazzi, Rychkov, 
Vichi, Tonni, Poland, Simmons-Duffin, El-Showk, Paulos, …..]

We revisit this problem in 2D, using modern 
numerical methods.
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Conformal bootstrap: the crossing equation

We will consider “simple” external primaries 
e.g. low dimension, marginal, BPS, … 
and constrain the content of OPE from unitarity
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I will present concrete results on the OPE of 
BPS operators in superconformal theories 

1. (4,4) SCFT, c=6  e.g. K3 CFT 

2. (2,2) SCFT,                  including CY3 models        

Our goal is to constrain the spectrum of non-
BPS operators in the OPE.

When there is a conformal manifold, we would 
like to understand the moduli dependence of 
the spectrum.
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(4,4) superconformal bootstrap 

1. c=6k small N=4 superconformal algebra 

2. focus on the simplest nontrivial case k=1 

3. consider OPE of a pair of marginal BPS primaries 
(weight h = SU(2)R spin j = 1/2) 

4. study superconformal block decomposition of BPS 
4-point function
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Key ingredient 1: N=4 BPS superconformal block 
(c=6, k=1 case)

Comes from analyzing the N=2 cigar coset SL(2)/U(1), combined with Ribault-
Teschner relation between SL(2) WZW and bosonic Liouville. 

[Chang-Lin-Shao-Wang-XY, ‘14]
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RCFTs

ADE singular CFT
. free orbifold point

Key ingredient 2: An exact result on the integrated 
BPS 4-point function (as function of moduli)

The moduli space of K3 CFT

parameterized by lattice 
embedding

LHS =  effective coupling of type IIB string on K3 at tree level

RHS =  solution to a set of second order differential equations on the moduli space 
that follow from 6D supersymmetry Ward identities

[Kiritsis-Obers-Pioline, ’00, Lin-Shao-Wang-XY, ‘15]



Feed into the bootstrap machine…



The gap in the non-BPS operator spectrum 
of the K3 CFT

(integrated 4-point function 
of a given BPS primary)



The development of continuum 
(when the integrated BPS 4-point function diverges)

extrapolation to infinite derivative 
order in the set of linear functionals
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Let us study the OPE of a conjugate pair of BPS 
operators (chiral primary h=q/2 and anti-chiral 
primary h=-q/2), and bound the gap in terms of chiral 
ring coefficients. 

A warm up: c=3, q=1/3   (realized by twist fields of T2/Z3)
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N=(2,2) Bootstrap 
c=3, chiral-anti-chiral OPE, q=1/3

OPE coefficient of q=2/3 BPS primary

entire bound saturated!



N=(2,2) Bootstrap 
c=3, chiral-anti-chiral OPE, q=1/3

bootstrap boundmoduli space of T2/Z3
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For CY 3-fold models, the BPS OPE 
coefficient     is a known function of 
moduli via special geometry and 
mirror symmetry.
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N=(2,2) Bootstrap 
c=9, chiral-anti-chiral OPE, q=1

A kink
Large volume quintic 
(or any 1-parameter 
Calabi-Yau model)



N=(2,2) Bootstrap 
c=9, chiral-anti-chiral OPE, q=1

OPE of twist fields of 
the Z-manifold CFT: 
general tilting, but 
no B-field



N=(2,2) Bootstrap 
c=9, chiral-anti-chiral OPE, q=1

OPE of twist fields of 
the Z-manifold CFT: 
a sampling over 
general tilting and 
flat B-field
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N=(2,2) Bootstrap 

c=9, gaps in chiral-anti-chiral (CA) vs 
chiral-chiral (CC) channels, q=1



realized by OPEs 
in free theories

N=(2,2) Bootstrap 

c=9, gaps in chiral-anti-chiral (CA) vs 
chiral-chiral (CC) channels, q=1
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3<c<9, OPE of marginal chiral and anti-chiral primaries
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3<c<9, OPE of marginal chiral and anti-chiral primaries

3 4 5 6 7 8 9
c
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Δgap
CA

q = 1, λ = 0

products of 
pairs of N=2 
min models!



To be continued…


