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Motivation - dualities of supersymmetric QFTs

Dualities are extremely useful probes to get a deeper understanding of
quantum field theory and string theory.

There is by now a vast web of supersymmetric dualities of QFTs known in
various numbers of dimensions and amounts of supersymmetry.

Examples of exact (conformal) dualities:
Mirror symmetry of 2d N = (2, 2) Calabi-Yau sigma models
S-duality of 4d N = 2 theories.

Examples of IR dualities:
Hori-Vafa duality- 2d N = (2, 2) linear sigma models↔ Landau-Ginzburg
models.
3d mirror symmetry - duality exchanging Higgs and Coulomb branches of IR
SCFT of 3d N = 4 and N = 2 gauge theories
Seiberg duality of 4d N = 1 QCD, eg:

SU(Nc) + Nf fundamental flavors↔

SU(Nf − Nc) + Nf fundamental flavors + Nf
2 mesons and W = qaMb

a q̃b

also 3d N = 2 and 2d N = (2, 2) versions.
Many others
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Evidence for dualities

Many of these dualities were found by taking low energy limits of string
theory constructions.

They can also be found by compactification of higher dimensional theories -
e.g., 4d S-duality arises by compactification of 6d N = (2,0) theory on a
Riemann surface.

Some tools for testing dualities

Matching of quantum moduli space of supersymmetric vacua
BPS operators/boundary conditions
’t Hooft anomaly matching
Consistency under RG flow

Also, partition functions on compact manifolds:

We can place theories supersymmetrically on a suitable compact
curved manifoldMd and compute the partition function, Z(Md ), by
localization.
This gives a rich, duality invariant observable, which contains much of
the information above.



Reduction and duality

In this talk we will ask the following questions (focusing on the case d = 3):
How can we describe the compactification of a d-dimensional SQFT
to d − 1 dimensions?
When does a d-dimensional duality imply a duality in d − 1
dimensions (and when does it not)?

In this way we can hope to better organize the web of dualities, and
possibly find new ones.

If two d-dimensional theories are exactly equivalent, then they are clearly
equivalent on Rd−1 × S1

r . At low energies compared to 1/r , we find
equivalent d − 1 dimensional theories.

However, for IR dualities this is no longer true. If µa are relevant parameters
which initiate a flow from the UV theory to the IR, we find on each side a
family of theories parameterized by:

γa ≡ µardim(µa)

For γa → 0, we are reducing the UV descriptions, and have a
d − 1-dimensional Lagrangian, but no duality.
For γa →∞, we are reducing the IR descriptions. Then we have a
duality, but may not have a useful Lagrangian description.
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Reducing from 3d N = 2 to 2d N = (2,2)

In this talk we will focus on the case of 3d N = 2 gauge theories. Here
there are two types of relevant parameters in the UV:

gauge couplings g2
3 j , real masses ma

Correspondingly, we can define two types of parameters for the theory on
S1

r :
γj = g2

3 j r , ta = rma

As we’ll see, the former control the asymptotic behavior of the target space
metric, while the latter give rise to Kahler moduli.

Another important feature here is the lack of a moduli space of a 2d CFT:
instead the states are wavefunctions on the pseudo-moduli space, and
there is typically a single
superselection sector.

However, a UV theory with
multiple branches may flow
to decoupled CFTs, eg,
N = (4,4) U(1) with Nf
hypermultiplets.



Example: free U(1) gauge theory

First consider the free 3d N = 2 U(1) gauge theory, with action:

S =

∫
d3x

1
g2

3
(F 2
µν + (∂µσ)2 − iλ†γµ∂µλ)

We can dualize the gauge field to a scalar φ by writing dφ = ?F . Then
quantization of flux identifies φ ∼ φ+ g3, and the moduli space is a cylinder:

Next consider placing this theory on R2 × S1
r . Then we find a sigma model

with cylinder target space, which, in 2d normalization, has radius√
g2

3 r =
√
γ.



Free U(1) gauge theory (cont’d)

Alternatively, we describe the 3d theory on a circle in terms of a twisted
chiral superfield:

Σ = σ + iA3 + ...

Large gauge transformations identify Σ ∼ Σ + i
r . In the 2d normalization,

the radius of the cylinder becomes 1√
γ . Thus we find a T-dual description of

the first cylinder.

Two lessons:
1 3d EM duality reduces to T-duality. [Aganagic, Karch, Hori, Tong].
2 The 2d theory depends importantly on γ = g2

3 r .



Example: U(1) Nf = 1

Next consider an interacting gauge theory: SQED with chirals Q and Q̃ of
charge 1 and −1. We will consider two relevant parameters:

gauge coupling g2
3 , Fayet-Iliopolous (FI) parameter ζ

The potential for the scalar fields is:

V =
g2

3

8
(|Q|2 − |Q̃|2 − ζ

2π
)2 + σ2(|Q|2 + |Q̃|2)

Then the moduli space of vacua consists of two branches:
A Higgs branch, where σ = 0, but Q, Q̃ are non-zero,
When ζ = 0, a Coulomb branch, where Q = Q̃ = 0, but σ is non-zero.



Example: U(1) Nf = 1 (cont’d)

While the Coulomb branch is asymptotically a cylinder of radius g3, the
Higgs branch is independent of g3.

In the IR limit, g3 →∞, these three branches appear symmetrically.

We find an IR dual description as an WZ model with superpotential
W = XYZ .



Reducing U(1) Nf = 1

If we place this theory (with ζ = 0) on R2 × S1
r , we find at energies below

1/r an effective 2d description.

Asymptotically on the Coulomb branch this is a sigma model with radius√
g2

3 r =
√
γ.

For finite γ, this theory is not equivalent to the 2d XYZ theory.

We can try to engineer a 2d UV description. A natural guess is as 2d
SQED with one flavor. However note:

g2
2 =

1
r

g2
3

So to obtain a finite g2, we must take γ → 0.

In particular, 2d SQED is not equivalent to XYZ ! (e.g., note they have
different numbers of branches in the IR.)



Fix 1- Focus on Higgs branches

Since the problem was with the Coulomb branch, we might look for
deformations which lift it.

The FI parameter ζ does precisely this. Let us then instead take:

t = ζr

non-zero and finite.

Then we claim one finds the 2d U(1) theory with non-zero FI parameter t .

On the XYZ side, this gives a large mass to two of the chirals, X and Y ,
and they can be integrated out. We find a single free chiral Z .

This leads to the 2d duality:

U(1) with chirals of charge 1 and −1, ↔ a free chiral

This appears to be a valid 2d duality (up to deformations of the asymptotic
Kahler potential).

For example, we can check the matching of supersymmetric partition
functions in 2d , namely, the S2 partition function and elliptic genus.



An aside - supersymmetric partition functions

A useful tool for studying dualities are supersymmetric partition functions.
These are computed by localization, and are a function of background
fields and geometric parameters:

ZMd (background fields µa, geometric parameters βi ) =
∑∫

BPS configurations

For studying reduction, we consider the 3d supersymmetric index, or
S2 × S1

τ partition function. It satisfies:

ZS2×S1
τ

(µa; τ) −→
τ→0

τ−c2d+...ZS2 (µa) + ...

Then starting from a 3d duality, the 3d indices of the theories match, and
so the S2 partition functions of the 2d reductions must match.

However, there may be some subtleties. E.g., if a direct sum of multiple
theories arises in 2d , only the one with maximal c2d will be seen.

The elliptic genus (or T 2 partition function), however, is defined with a twist
by the left-moving R-symmetry, and so does not have a 3d uplift. Thus
matching of the elliptic genus is a strong independent check of 2d dualities.



Fix 2- Duality of massive theories

Another approach is to look at the theory with generic mass parameters
turned on, which lifts the moduli space to discrete vacua.

Here a useful object is the effective twisted superpotential W̃ (Σ; r) of the
3d theory compactified on S1

r . [Aganagic, Hori, Karch, Tong]

Taking the r → 0 limit, and defining X = rΣ, one finds the gauge theory is
described at low energies by the twisted superpotential:

W̃ (X ) = ζX + m log sinh
X
2

giving a massive Landau-Ginzburg model for the twisted chiral field X .

One can check that this matches the mass-deformed XYZ theory in 2d .
E.g., one can compute their S2 partition functions and check:

ZS2 (ζ,m)[LG model] = ZS2 (ζ,m)[XYZ ]

This also follows by carefully taking the τ → 0 limit of the identity of the 3d
index identities.

However, the duality of the massive theories need not imply a duality at
zero mass.



U(Nc) theory with Nf flavors

Next let us consider a more complicated example, U(Nc) gauge theory with
Nf pairs of (anti-)fundamental chirals.

This theory has the following IR-dual description [Aharony]:

U(Nf − Nc) + Nf flavors + N2
f mesons and singlets Ṽ±

with superpotential W = Mqq̃ + V+Ṽ− + V−Ṽ+

As before, reducing the undeformed theory leads to problems with the
Coulomb branch, so we set t = ζr finite.

This gives a mass to the fields Ṽ±, and we arrive at the following 2d duality,
found previously by [Benini, Park, Zhao]:

U(Nc) + Nf flavors ↔ U(Nf − Nc) + Nf flavors + mesons

The identity of S2 partition functions follows from that of the S2 ×S1 identity
of the 3d dual theories. The identity of the elliptic genus also holds, as an
independent 2d check.



U(Nc) theory with Nf flavors and CS level k

Next we consider the same theory with the addition of a SUSY
Chern-Simons term for the gauge field, defined for k ∈ Z:

SCS =
k

4π

∫
d3xTr

(
εµνρ(Aµ∂νAρ +

2i
3

AµAνAρ) + 2σD + λ†λ

)
Then is theory has the following IR-dual description [Giveon, Kutasov]:

U(|k |+ Nf − Nc)−k + Nf flavors + N2
f mesons, with W = Mqq̃

The effect of the Chern-Simons term in the 3d theory on a circle naively
vanishes as we take r → 0. Proceeding as before, we seem to find a 2d
duality:

U(Nc) + Nf flavors ?↔ U(|k |+ Nf − Nc) + Nf flavors + mesons

for any k ∈ Z, which is clearly wrong.



U(Nc) theory with Nf flavors and CS level k (cont’d)

To see what’s
going on, we mass
deform the theory
and study the
behavior of the
vacua as r → 0
using W̃ (Σ, r).

We find the low energy limit of U(Nc)k + Nf flavors on S1
r is a direct sum:(

U(Nc) + Nf flavors
)
⊕

(
U(Nc − 1) + Nf flavors

)
⊕ ...⊕

(
U(Nc − k) + Nf flavors

)
The dual decription is similarly given by a direct sum, which is term-wise
dual: (

U(|k |+ Nf − Nc) + Nf flavors
)
⊕ ...⊕

(
U(Nf − Nc) + Nf flavors

)



Some other examples

3d duality: Abelian mirror symmetry
⇒ 2d duality: Hori-Vafa/Hori-Kapustin duality (as shown by [Aganagic et
al])

3d duality: SU(Nc)k (Nf ,Na) (anti-)fundamental chirals dual to
SU(Nf − Nc)−k with (Nf ,Na) for Nf > Na + 1, k < Nf−Na

2 .
[Aharony,Fleischer]
⇒ 2d duality: SU(Nc) (Nf ,Na) dual to SU(Nf −Nc) (Nf ,Na) for Nf > Na + 1
→ generalization of [Hori,Tong].

3d duality: Sp(2Nc)k 2Nf flavors dual to Sp(2(Nf + k − Nc − 1))−k + 2Nf
flavors
⇒ 2d duality: For 2k odd, gives Sp(2Nc) 2Nf flavors dual to
Sp(2(Nf − Nc − 1

2 )) + 2Nf flavors [Hori]. For 2k even, there is an unlifted
Coulomb branch, and we do not find duality of 2d gauge theories.

S2 partition functions match in these examples, as required by reducing the
3d index identites. Elliptic genera also match.



Summary

We have seen various physical subtleties arise when studying the
compactification of IR dualities of 3d theories.

Because of the dependence of the 2d theory on the gauge coupling, naive
reduction of dualities does not work, but sometimes fixes are available.

The effective twisted superpotential and supersymmetric partition functions
give useful tools for studying the reduction.

We have recovered known dualities in 2d , and found new ones.

Open questions

Better understanding the reduction of theories with Coulomb branches.

Reducing other dualities from 3d to 2d , eg, nonabelian mirror symmetry,
dualities derived from class S in 4d .

Study reductions between other dimensions - eg, 5→ 4,4→ 2 (choice of
Riemann surface, fluxes), etc.


