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Motivation - dualities of supersymmetric QFTs

@ Dualities are extremely useful probes to get a deeper understanding of
quantum field theory and string theory.

@ There is by now a vast web of supersymmetric dualities of QFTs known in
various numbers of dimensions and amounts of supersymmetry.



Motivation - dualities of supersymmetric QFTs

@ Dualities are extremely useful probes to get a deeper understanding of
quantum field theory and string theory.

@ There is by now a vast web of supersymmetric dualities of QFTs known in
various numbers of dimensions and amounts of supersymmetry.

@ Examples of exact (conformal) dualities:

° of 2d N = (2,2) Calabi-Yau sigma models
° of 4d N = 2 theories.

@ Examples of IR dualities:
° -2d N = (2,2) linear sigma models <+ Landau-Ginzburg
models.

) - duality exchanging Higgs and Coulomb branches of IR
SCFT of 3d N = 4 and N/ = 2 gauge theories

° of 4d N =1 QCD, eg:
SU(N;) + N: fundamental flavors «»

SU(Nf — N;) + Ny fundamental flavors + N mesons and W = anﬁc}b

also 3d /' =2 and 2d N = (2, 2) versions.
@ Many others



Evidence for dualities

@ Many of these dualities were found by taking low energy limits of string
theory constructions.

@ They can also be found by compactification of higher dimensional theories -
e.g., 4d S-duality arises by compactification of 6d A/ = (2, 0) theory on a
Riemann surface.

@ Some tools for testing dualities

Matching of quantum moduli space of supersymmetric vacua
BPS operators/boundary conditions

't Hooft anomaly matching

Consistency under RG flow

@ Also, partition functions on compact manifolds:

e We can place theories supersymmetrically on a suitable compact
curved manifold My and compute the partition function, Z(My), by
localization.

e This gives a rich, duality invariant observable, which contains much of
the information above.



Reduction and duality

@ In this talk we will ask the following questions (focusing on the case d = 3):

o How can we describe the compactification of a d-dimensional SQFT
to d — 1 dimensions?

@ When does a d-dimensional duality imply a duality in d — 1
dimensions (and when does it not)?

@ In this way we can hope to better organize the web of dualities, and
possibly find new ones.



Reduction and duality

@ In this talk we will ask the following questions (focusing on the case d = 3):
o How can we describe the compactification of a d-dimensional SQFT
to d — 1 dimensions?
@ When does a d-dimensional duality imply a duality in d — 1
dimensions (and when does it not)?

@ In this way we can hope to better organize the web of dualities, and
possibly find new ones.

@ If two d-dimensional theories are exactly equivalent, then they are clearly
equivalent on R9~! x S!. At low energies compared to 1/r, we find
equivalent d — 1 dimensional theories.

@ However, for IR dualities this is no longer true. If 14 are relevant parameters
which initiate a flow from the UV theory to the IR, we find on each side a
family of theories parameterized by:

Va = pugrdmia)

e For v, — 0, we are reducing the UV descriptions, and have a
d — 1-dimensional Lagrangian, but no duality.

e For v, — oo, we are reducing the IR descriptions. Then we have a
duality, but may not have a useful Lagrangian description.



Reducing from 3d N/ =2to 2d N = (2, 2)

@ In this talk we will focus on the case of 3d N = 2 gauge theories. Here
there are two types of relevant parameters in the UV:

gauge couplings g§/, real masses m,

@ Correspondingly, we can define two types of parameters for the theory on
S}
V= g§,-f, fa=1rmy
@ As we’ll see, the former control the asymptotic behavior of the target space
metric, while the latter give rise to Kahler moduli.

@ Another important feature here is the lack of a moduli space of a 2d CFT:
instead the states are wavefunctions on the pseudo-moduli space, and

there is typically a single
superselection sector.
@ However, a UV theory with -
multiple branches may flow
4
& + 4

to decoupled CFTs, eg,
N = (4,4) U(1) with Ny
hypermultiplets.



Example: free U(1) gauge theory

@ First consider the free 3d A/ = 2 U(1) gauge theory, with action:
S= / d3x;2(F3,, + (8,0)2 — iIXTA"9,0)
3

@ We can dualize the gauge field to a scalar ¢ by writing d¢ = xF. Then
quantization of flux identifies ¢ ~ ¢ + g3, and the moduli space is a cylinder:

Y

@ Next consider placing this theory on R? x S!'. Then we find a sigma model
with cylinder target space, which, in 2d normalization, has radius

Vegr= v

a—+ i




Free U(1) gauge theory (contd)

@ Alternatively, we describe the 3d theory on a circle in terms of a twisted
chiral superfield:
Y=0+IiAz+..
@ Large gauge transformations identify ¥ ~ ¥ + % In the 2d normalization,
the radius of the cylinder becomes % Thus we find a T-dual description of
the first cylinder.

(D)

o+ iAs

@ Two lessons:

@ 3d EM duality reduces to T-duality. [Aganagic, Karch, Hori, Tong].
@ The 2d theory depends importantly on v = g2r.



Example: U(1) Ny = 1

@ Next consider an interacting gauge theory: SQED with chirals Q and Q of
charge 1 and —1. We will consider two relevant parameters:

gauge coupling g3, Fayet-lliopolous (FI) parameter ¢

@ The potential for the scalar fields is:
V=902 - 3R - £+ 02(QF +|3P)
8 2T

@ Then the moduli space of vacua consists of two branches:

o A Higgs branch, where o = 0, but Q, Q are non-zero,
e When ¢ = 0, a Coulomb branch, where Q = Q = 0, but ¢ is non-zero.

N 7

Coulomb



Example: U(1) N = 1 (cont'd)

@ While the Coulomb branch is asymptotically a cylinder of radius g3, the
Higgs branch is independent of gs.

@ Inthe IR limit, g3 — oo, these three branches appear symmetrically.

@ We find an IR dual description as an WZ model with superpotential
W = XYZ.



Reducing U(1) Ny =1

@ If we place this theory (with ¢ = 0) on R? x S}, we find at energies below
1/r an effective 2d description.

@ Asymptotically on the Coulomb branch this is a sigma model with radius
V5=V
@ For finite v, this theory is not equivalent to the 2d XYZ theory.

@ We can try to engineer a 2d UV description. A natural guess is as 2d
SQED with one flavor. However note:

2_1

9 = 79%

So to obtain a finite g», we must take v — 0.

@ In particular, 2d SQED is not equivalent to XYZ! (e.g., note they have
different numbers of branches in the IR.)



Fix 1- Focus on Higgs branches

@ Since the problem was with the Coulomb branch, we might look for
deformations which lift it.

@ The Fl parameter ¢ does precisely this. Let us then instead take:
t=(r
non-zero and finite.

@ Then we claim one finds the 2d U(1) theory with non-zero Fl parameter t.

@ On the XYZ side, this gives a large mass to two of the chirals, X and Y,
and they can be integrated out. We find a single free chiral Z.

@ This leads to the 2d duality:

U(1) with chirals of charge 1 and —1, +  afree chiral

@ This appears to be a valid 2d duality (up to deformations of the asymptotic
Kahler potential).

@ For example, we can check the matching of supersymmetric partition
functions in 2d, namely, the S? partition function and elliptic genus.



An aside - supersymmetric partition functions

@ A useful tool for studying dualities are supersymmetric partition functions.
These are computed by localization, and are a function of background
fields and geometric parameters:

Z am, (background fields 114, geometric parameters 3;) = z BPS configurations

For studying reduction, we consider the 3d supersymmetric index, or
S2 x S! partition function. It satisfies:
Zoas(am) = T Ze(ua) + o
T

Then starting from a 3d duality, the 3d indices of the theories match, and
so the S? partition functions of the 2d reductions must match.

However, there may be some subtleties. E.g., if a direct sum of multiple
theories arises in 2d, only the one with maximal c,q will be seen.

The elliptic genus (or T2 partition function), however, is defined with a twist
by the left-moving R-symmetry, and so does not have a 3d uplift. Thus
matching of the elliptic genus is a strong independent check of 2d dualities.



Fix 2- Duality of massive theories

@ Another approach is to look at the theory with generic mass parameters
turned on, which lifts the moduli space to discrete vacua.

@ Here a useful object is the effective twisted superpotential W(E; r) of the
3d theory compactified on S}'. [Aganagic, Hori, Karch, Tong]

@ Taking the r — 0 limit, and defining X = r¥, one finds the gauge theory is
described at low energies by the twisted superpotential:
W(X) = ¢X + mlogsinh g

giving a massive Landau-Ginzburg model for the twisted chiral field X.

@ One can check that this matches the mass-deformed XYZ theory in 2d.
E.g., one can compute their S? partition functions and check:

Zs2(¢, m)[LG model] = Zs (¢, m)[XYZ]
@ This also follows by carefully taking the = — 0 limit of the identity of the 3d
index identities.

@ However, the duality of the massive theories need not imply a duality at
zero mass.



U(N;) theory with N flavors

@ Next let us consider a more complicated example, U(N;) gauge theory with
Nt pairs of (anti-)fundamental chirals.

@ This theory has the following IR-dual description [Aharony]:
U(Nf — N;) + N flavors + N,? mesons and singlets V.
with superpotential W = Mqg + V. V_ + V_V,

@ As before, reducing the undeformed theory leads to problems with the
Coulomb branch, so we set t = (r finite.

@ This gives a mass to the fields V., and we arrive at the following 2d duality,
found previously by [Benini, Park, Zhao]:

U(N;) + Nfflavors «  U(Nf— Ng) + N flavors + mesons

@ The identity of S? partition functions follows from that of the S? x S' identity
of the 3d dual theories. The identity of the elliptic genus also holds, as an
independent 2d check.



U(N;) theory with N flavors and CS level k

@ Next we consider the same theory with the addition of a SUSY
Chern-Simons term for the gauge field, defined for k € Z:

2i

k LV
Sos = - / d3xTr(e’ P(Aud A, + 3

AALA) + 20D + AM)

@ Then is theory has the following IR-dual description [Giveon, Kutasov]:

U(lk| + N — Ng)_x + Ny flavors + N? mesons, with W = Mqg
@ The effect of the Chern-Simons term in the 3d theory on a circle naively
vanishes as we take r — 0. Proceeding as before, we seem to find a 2d
duality:

U(N;) + N flavors & U(lk| + Nf — N;) + Nt flavors + mesons

for any k € Z, which is clearly wrong.



U(N;) theory with N flavors and CS level k (cont'd)

@ To see what’s

mass deform vacua

going on, we mass
deform the theory 3d theory on circle r50 \l/
and study the
behavior of the
vacuaasr— 0
using W X, r).

Direct sum of 2d theories

@ We find the low energy limit of U(N;)x + N flavors on S is a direct sum:
(U(Nc) + N¢ fIavors) &) (U(NC —1) + N¢ flavors) ®..0 (U(Nc —Kk) + N¢ ﬂavors)

° gheldual decription is similarly given by a direct sum, which is term-wise
ual:

(U(\k| + Nr — Ne) + Nt fIavors) PD..H (U(N,« —Ne) + Nt fIavors)



Some other examples

@ 3d duality: Abelian mirror symmetry

= 2d duality: Hori-Vafa/Hori-Kapustin duality (as shown by [Aganagic et
al])

@ 3d duality: SU(N:)k (Nr, N3) (anti-)fundamental chirals dual to
SU(Ns — Ng)_ with (N, Na) for Nf > Ny + 1, k < Nl
[Aharony,Fleischer]
= 2d duality: SU(N;) (N, N3) dual to SU(Nr — N¢) (N, Ny) for Ny > N5 + 1
— generalization of [Hori,Tong].

@ 3d duality: Sp(2N;)x 2N; flavors dual to Sp(2(Nr + k — N — 1)) + 2N¢
flavors
= 2d duality: For 2k odd, gives Sp(2N;) 2N; flavors dual to
Sp(2(Nf — N, — %)) + 2N flavors [Hori]. For 2k even, there is an unlifted
Coulomb branch, and we do not find duality of 2d gauge theories.

@ S? partition functions match in these examples, as required by reducing the
3d index identites. Elliptic genera also match.



@ We have seen various physical subtleties arise when studying the
compactification of IR dualities of 3d theories.

@ Because of the dependence of the 2d theory on the gauge coupling, naive
reduction of dualities does not work, but sometimes fixes are available.

@ The effective twisted superpotential and supersymmetric partition functions
give useful tools for studying the reduction.

@ We have recovered known dualities in 2d, and found new ones.

Open questions
@ Better understanding the reduction of theories with Coulomb branches.

@ Reducing other dualities from 3d to 2d, eg, nonabelian mirror symmetry,
dualities derived from class S in 4d.

@ Study reductions between other dimensions - eg, 5 — 4,4 — 2 (choice of
Riemann surface, fluxes), etc.



