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6d/5d/4d AGT Correspondence in Physics and

Mathematics

Higher AGT ) 3 .

e m Circa 2009, Alday-Gaiotto-Tachikawa [1] — showed that
W-algebras, the Nekrasov instanton partition function of a 4d A/ = 2
an igher . . .

Quantum conformal SU(2) quiver theory is equivalent to a

Geometric

Langlands conformal block of a 2d CFT with W,-symmetry that is

Duality from

M-Theory Liouville theory. This was henceforth known as the

Meng-Chwan celebrated 4d AGT correspondence.
Tan

m Circa 2009, Wyllard [2] — the 4d AGT correspondence is
proposed and checked (partially) to hold for a 4d N =2
conformal SU(N) quiver theory whereby the corresponding
2d CFT is an Ay_1 conformal Toda field theory which has
Whp-symmetry.

m Circa 2009, Awata-Yamada [3] — formulated 5d pure
AGT correspondence for SU(2) in terms of g-deformed
W-algebra.

Introduction



6d/5d/4d AGT Correspondence in Physics and
Mathematics

Higher AGT
Correspon-
dences,
W-algebras, . .
and Higher m Circa 2011, Awata et al. [4] — mathematically
Quantum .
Geometric conjectured 5d AGT correspondence for conformal SU(N)
Langlands . .
Duality from linear quiver theory.
M-Theory

Meng.Chwan m Circa 2011, Keller et al. [5] — proposed and checked
E (partially) the 4d AGT correspondence for N' = 2 pure
Introduction arbitrary G theory.

m Circa 2012, Schiffmann-Vasserot, Maulik-Okounkov [6, 7]
— the equivariant cohomology of the moduli space of
SU(N)-instantons is related to the integrable
representations of an affine WWy-algebra (as a
mathematical proof of 4d AGT for pure SU(N)).




6d/5d/4d AGT Correspondence in Physics and

Mathematics

Higher AGT
Correspon-

e m Circa 2013, Tan [8] — M-theoretic derivation of the 4d

W-algebras,
] (R AGT correspondence for arbitrary compact Lie groups, and

Quantum

Geometric its generalizations and connections to quantum integrable
Langlands

Dhgla_"'thegfym systems.

i m Circa 2013, Tan [9] — M-theoretic derivation of the 5d
and 6d AGT correspondence for SU(N), and their

Introduction generalizations and connections to quantum integrable

systems.

m Circa 2014, Braverman-Finkelberg-Nakajima [10] — the
equivariant cohomology of the moduli space of
G-instantons is related to the integrable representations of
a W(lg.q)-algebra (as a mathematical proof of 4d AGT
for simply-laced G with Lie algebra g).




6d/5d/4d AGT Correspondence in Physics and
Mathematics

Higher AGT
Correspon-
dences,
W-algebras,
and Higher

Quantum m Circa 2015, Igbal-Kozcaz-Yau [11] — string-theoretic

Geometric

Langlands derivation of the 6d AGT correspondence for SU(2), where

Duality from

M-Theory 2d CFT has elliptic Wh-symmetry.

Meng-Chwan
Tan

_ m Circa 2015, Nieri [12] — field-theoretic derivation of the
introduction 6d AGT correspondence for SU(2), where 2d CFT has
elliptic Wh-symmetry.

m Circa 2016, Tan [13] — M-theoretic derivation of the 5d
and 6d AGT correspondence for arbitrary compact Lie
groups, and more.




Motivations for Our Work

BEEGS 1), The recent work of Kimura-Pestun in [14] which furnishes a

Correspon-

e gauge-theoretic realization of the g-deformed affine WW-algebras

and Higher constructed by Frenkel-Reshetikhin in [17], strongly suggests

Quantum . . .

BT that we should be able to realize, in a unified manner through
anglands . . .

Duality from our M-theoretic framework in [8, 9], a quantum geometric
M-Theory . . . .

. Langlands duality and its higher analogs as defined by

Tan Feigin-Frenkel-Reshetikhin in [15, 16], and more.

T 2). The connection between the gauge-theoretic realization of
the geometric Langlands correspondence by Kapustin-Witten
in [18, 19] and its original algebraic CFT formulation by
Beilinson-Drinfeld in [20], is hitherto still missing. The fact
that we can relate 4d supersymmetric gauge theory to ordinary
affine W-algebras which obey a geometric Langlands duality,
suggests that the sought-after connection may actually reside
within our M-theoretic framework in [8, 9].



Summary of Talk

Higher AGT
Correspon-
dences,

Al  |n this talk based on [13], we will present an M-theoretic

S derivation of a 5d and 6d AGT correspondence for arbitrary

compact Lie groups, from which we can obtain identities of
various Wh-algebras which underlie a quantum geometric

s e Langlands duality and its higher analogs, whence we will be

able to

Langlands
Duality from
M-Theory

Introduction

(i) elucidate the sought-after connection between the 4d
gauge-theoretic realization of the geometric Langlands
correspondence by Kapustin-Witten [18, 19] and its algebraic
2d CFT formulation by Beilinson-Drinfeld [20],



Summary of Talk

Higher AGT
Correspon-
dences,
W-algebras,

and Higher (i) explain what the higher 5d and 6d analogs of the geometric

Quantum

Coomenr Langlands correspondence for simply-laced Lie (Kac-Moody)

AUl groups G (G), ought to involve,

M-Theory

Meng-Chwar

Tan a nd

e (iii) demonstrate Nekrasov-Pestun-Shatashvili's recent result
in [21], which relates the moduli space of 5d/6d
supersymmetric G (G)-quiver SU(K;) gauge theories to the
representation theory of quantum/elliptic affine (toroidal)

G-algebras.
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Review of 4d

AGT

Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT

Correspondence for Compact Groups

Via a chain of string dualities in a background of fluxbranes as
introduced in [22, 23], we have the dual M-theory
compactifications

4 5 5 R—0
R |61,62 X zn,t xR |63;X6,7 — R |63:X4,5><C X TNNH |63:X6,7’
—_——

N Mb5-branes 1 Mb5-branes

(1)
where n =1 or 2 for G = SU(N) or SO(N + 1) (N even), and

4 5 5 R—0
R |617€2 X Zn,t xR |63;X6,7 — R ‘63:X4,5XC X SNN—> |€3;X6,77
—_———— _

N Mb5-branes + OM5-plane 1 M5?granes
(2)
where n =1, 2 or 3 for G = SO(2N), USp(2N — 2) or G
(with N = 4).

Here, €3 = €1 + €3, the surface C has the same topology as
Yot = S}, x I, and we have an M9-brane at each tip of I;.
The radius of St is given by /3, which is-much larger than I;.
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Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT

Correspondence for Compact Groups

The relevant spacetime (quarter) BPS states on the LHS of (1)
and (2) are captured by a gauged sigma model on instanton
moduli space, and are spanned by

@ IHU(l XTU(MG m) (3)

while those on the RHS of (1) and (2) are captured by a
gauged chiral WZW model on the I-brane C in the equivalent

1A frame, and are spanned by

W( gar)- (4)
The physical duality of the compactifications in (1) and (2) will
mean that (3) is equivalent to (4), i.e

@ TH} 120 7 UM m) = W( ga) (5)




Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT

Correspondence for Compact Groups

Higher AGT
Correspon-

ences, The 4d Nekrasov instanton partition function is given by
V-algebras,
and Higher

Q - v -
Geometnc Zinst(N\, €1,€2,3) = Z/\zmhg ZBps,m(€1, €2,3,6 —0), (6)
m

Langlands
Duality from
M-Theory

Meng-Chuwar where A can be interpreted as the inverse of the observed scale
o of the R?*|, , space on the LHS of (1), and Zgps,m is a 5d
worldvolume index.

Review of 4d . . . .
AGT Thus, since Zgps,m is a weighted count of the states in

H%PS,m = IHZ(l)QxTL{(MGJn), it would mean from (6) that
Zinst(/\7 €1, €2, 5) = <\U|W>, (7)

where ’\U> = @m /\mhgv‘wm> S @m IHL(l)szu(MG,m)-
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Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT

Correspondence for Compact Groups

In turn, the duality (5) and the consequential observation that
|W) is a sum over 2d states of all energy levels m, mean that

V) =lq,4), (8)

where |g, A) € W(Lgaﬁ) is a coherent state, and from (7),

[ Zunst(Ae1,2,3) = (9, 4]q,8)] (9)

Since the LHS of (9) is defined in the 3 — 0 limit of the LHS
of (1), |g,A) and (g, A| ought to be a state and its dual
associated with the puncture at z = 0,00 on C, respectively (as
these are the points where the S} fiber has zero radius). This is
depicted in fig. 1 and 2.

Incidentally, Xsyy in fig. 1 and 2 can also be interpreted as the

Seiberg-Witten curve which underlies Zingt (A, €1, €2, 3)!



Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT

Correspondence for Compact Groups

Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Review of 4d
AGT

Figure 2: Xsy as a 2N-fold.cover of C




Lightning Review: An M-Theoretic Derivation of the 4d AGT

Correspondence with Matter

Higher AGT Let us now extend our derivation of the pure AGT

Correspon-

dences, correspondence to include matter.
W-algebras,

oy For illustration, we shall restrict ourselves to the A-type

Quantum

f:ﬁ;:ﬁﬂz superconformal quiver gauge theories described by Gaiotto

Duality from .

M-Theory n [24]

Meng: Chur To this end, first note that our derivation of the pure 4d AGT
correspondence is depicted in fig. 3.

2, (B0

Review of 4d } |
AGT ¢
I i I & Vel Vs

Figure 3: A pair of M9-branes in the original compactification in the limit
(8 — 0 and the corresponding CFT on C in the dual compactification in our
derivation of the 4d pure AGT correspondence.




Lightning Review: An M-Theoretic Derivation of the 4d AGT

Correspondence with Matter

%f:ﬁ;@ﬂ This suggests that we can use the following building blocks in
fig. 4 for our derivation of the 4d AGT correspondence with

dences,
W-algebras,
and Higher matter.
Quantum
Geometric s
Langlands | nal$20)

sl
Duality from
M-Theory
) a; gy = Ve Ve = ve Ve )
Meng-Chwar a @i @ i
Tan . .

(a)

Vi

Review of 4d

((p=0)

- 1
Ve ve g T —
- = Vi, T () )
[ Ve )
C
(b)

AGT

2
f
I '

Figure 4: Building blocks with “minimal”
the AGT correspondence with matter

M9-branes for our derivation of



Lightning Review: An M-Theoretic Derivation of the 4d AGT

Correspondence with Matter

Consider a conformal necklace quiver of n SU(N), N > 2.

4)

Higher AGT
Correspon-

dences, (1) 0
W-algebras, - W\ . e
,/,"

and Higher o
Quantum "”My‘ )
Geometric ] o . 5

Langlands ~
Duality from ( su(x), ) LY .
M-Theory \g\/ﬂx . : @ .
) — - * :

Meng-Chw
Tan l T

Review of 4d
AGT

Figure 5: The necklace quiver diagram and the various steps that lead us
to the overall Riemann surface ¥ on which our 2d CFT lives.
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Lightning Review: An M-Theoretic Derivation of the 4d AGT

Correspondence with Matter

Figure 6: The effective 4d-2d correspondence




Lightning Review: An M-Theoretic Derivation of the 4d AGT

Correspondence with Matter

Higher AGT
oo In the case of a necklace quiver of n SU(N) gauge groups,

dences,

W-algebras,
and Higher

uantum k

S Zotk ~ (V@) Ve (@ qn)), (10)
Duali%y from

M-Theory where \/](z) is a primary vertex operator of the Verma module
Meng-Chwar — ! . . 3

Tan W(tsu(N)ag) with highest weight
- —ims_
! for s=1,2,....n (11)

Review of 4d _IS = —
AGT /6162
and conformal dimension

—_2 _."._;
u§2):£_m’ where s=1,2,...,n (12)
2 €1€2



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Higher AGT
Correspon-
dences,
W-algebras, i
and Higher A pure U(1) theory can also be interpreted as the m — oo,

Quantum

SR >™™ — 0 limit of a U(1) theory with an adjoint

anglands . o

Duality from hypermultiplet matter of mass m and complexified gauge

M-Theory . / 2mit! . . .

o coupling 7', where me = A remains fixed. This means from
Tan fig. 5 (with n = 1) that the 5d Nekrasov instanton partition

function for pure U(1) can be expressed as

Zpre (e, €2, 8,A) = (O[O moo(1)|0)s2,  (13)

5d/6d AGT

where @, (1) is the 5d analog of the 4d primary vertex
operator \/]1 in fig. 6 in the m — oo limit.



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Higher AGT In the 5d case where § - 0, states on C are no longer localized

Correspon-

e to a point but are projected onto a circle of radius 3. This

and Higher results in the contribution of higher excited states which were
Coomire decoupled in the 2d CFT of chiral fermions when the states
D:i”f: from were defined at a point. Consequently, we can compute that
-Theory
,5d
th%r:,:]wm Zilz;g::eu(l)(eh €2, /87 A) = <GU(1) | GU(1)> (14)
with
1 (BN)"
Gu) = exp ( 5 2N ) o ()
n>0
5d/6d AGT .
where the deformed Heisenberg algebra
1— t|P|
[ap, an] = PW(SPM,Oa ap>o[0) =0 (16)
and

t = e—fﬁ\/GlEz7 q= e—i,@(€1+62+\/6162)' (17)



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Fg?rzrsiﬂ According to fig. 1, the 2d CFT in the SU(N) case is just an
URTERE  \/-tensor product of the 2d CFT in the U(1) case. In other

and Higher
Quantum WOrdS, we haVe

Geometric
Langlands

Duality from R d —
M-Tzeory Ziilsl:esi/(N)(ela €2, 4, 3, /\) = <GSU(N) | GSU(N)> (18)

Meng-Chwan

Tan
1 ( )"'

|Gsugny) = (e Zm>0m 1= 2=n) (@0 10);) (19

where

5d/6d AGT

1 — ¢lmd
[am, s an,] = my |5mk+nk707 amk>0’@>k =0 (20)

1-— q|mk

and
F— efi,B\/@7 q= e~ Blatetyae) (21)



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Higher AGT
Correspon-

dences,
W-algebras, .

LT Note that (19)—(21) means that [Gsy(n)) is a coherent state
uantum . . .
Geomstrc state in a level N module of a Ding-lohara algebra [25], which,
Duality from according to [26], means that

M-Theory

Meng-Chwan

Tan ’GSU(N)> S W(Lﬁu(/\/)aﬂ) (22)

is a coherent state in the Verma module of W9(Lsu(N).g), the
g-deformed affine W-algebra associated with Lsu(N).gq.

5d/6d AGT

The relations (18) and (22) define a 5d pure AGT
correspondence for the Ay_1 groups.



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

pdodll  Therefore, according to [7, 27, 28], with regard to the 2d CFT's
on the RHS of (9) and (18), we have the following diagram

dences,
W-algebras,

and Higher
Quantum
Geometric
Langlands ~ ~
Sl Yoo e Vi) o
Meng-Chwan Nt;;nos ’
Tan
ﬁ—>0H5+>0 p—05+»0

U;(Lg[(]-)aff,l) R ® l/J;(Lg[(l)aﬁf,l) - W\q(ﬁu(N)aﬁk)

~
N times

5d/6d AGT

(23)

where ?(g[(l)aﬁ‘yl) and (J;(Lg[(l)aﬁ‘y]_) are level one modules of
the Yangian and quantum toroidal algebras, respectively, and

the level k(N,€1’2).



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

%f:ﬁ;@ﬂ Let e3 = 0, i.e. turn off Omega-deformation on 2d side. This
ungauges the chiral WZW model on C. Then, conformal

dences,
Wh-algebras,

and ﬁitgher invariance, and the remarks above (14), mean that we have the
Geometric following diagram

Langlands
Duality from = PTPRN

M-Theory g[(].) fF.1 & .- ®g[(]‘) ff,1 Y
Meng-Chwan = v — 5u(N)aﬁ71
Tan N times
5—>0Hﬂﬂ‘*0 5—>0‘5+>0
Lal(1),q; ® - ® Lgl(1) -
5d/6d AGT gl( )aﬁ"]_ al( )aﬂ,lz Lsu(N)aﬂ"l
N times (24)

From diagrams (23) and (24), turning on Omega-deformation
on the 2d side effects (i) gl(1)ag1 — Y(gl(1)ag,1) and

SU(N) oy — W(su(N),q4); (i) Lgl(1)agr — Uq(Lgl(1)am1)
and Lsu(N)afL1 — Wq(su(N)aH,k).



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Higher AGT
il Now, with €3 = 0 still, let n=2in (1), i.e. G = SO(N + 1).

dences,
VV-algebras, Then, we have, on the 2d side, the following diagram

and Higher
Quantum
Geometric
Langlands
Duality from
M-Theor
S —(2) —(2)
o O LT OO
~ ff,1
N times *
ﬁ—>0Hﬁ+>0 f—=0B-0
5d/6d AGT
—(2) —(2)
Lol(1).q, ® - @ Lgl(1),q ;) L;t(\N)(z)
~ aff,1

N times (25)



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Higher AGT
Correspon- . . .

dences, Now, turn on Omega-deformation on 2d side, i.e. €3 # 0.
W-algebras,

i Bl According to the remarks below (24), we have
et
Langlands
Duality from (2) S (2)
M-Theory Y(g[(l) ) N ® Y(g[(l) - 2
Sy L W(su(N) )
Tan N times
p—0]|8-»0 p—0]|8-+»0
5d/6d AGT L/j\ Lal(1 ) U Lal ()
R ® —
CI( g ( )aff,l) ( g ( )aff 1) Wq(ﬁu(N);(j%k)
N times

(26)



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B

Groups

Higher AGT
Correspon-

s Comparing the bottom right-hand corner of (26) with the

W-algebras,

and Higher bottom right-hand corner of (23) for the A groups, and bearing
e in mind the isomorphism 5u(N)$f) = Lso(N + 1),4, it would

R e mean that we ought to have
-Theory

Meng-Chwan
Tan ure, 5d -
! Zil;r)lst, SE)O(N_H_)(EL €2, 4, ﬁa /\) = <GSO(N+1) | GSO(N+1)> (27)

where the coherent state

5d/6d AGT

|Gson41)) € Wi(Lso(N + 1)ag) (28)

The relations (27) and (28) define a 5d pure AGT
correspondence for the By > groups.



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for

C-D-G, Groups

bl Now, with €3 =0, let n=1, 2 or 3 in (2), i.e. G=SO(2N),
USp(2N — 2) or G, (with N = 4). This ungauges the chiral

dences,

W-algebras, . .
and Higher WZW model on C. Then, conformal invariance, and the

Quantum .
Geomstrc remarks above (14), mean that we have, on the 2d side, the
anglands . .

Duality from following diagram

M-Theory

[,Mlv%r‘:’”hu—m /\(n) (n
50(2)aff,1 Q- ® 50(2)affl — 50(2,\/)(;?
~ aff,1

N times

5d/6d AGT 6%0 ﬁﬂ’—)o BHO 5%0

— (N /\(n)

(n)
aff,1
N times (29)




An M-Theoretic Derivation of a 5d Pure AGT Correspondence for
C-D-G, Groups

Higher AGT
Correspon-

e Now, turn on Omega-deformation on 2d side, i.e. €3 # 0.
)-algebras,

2 s According to the remarks below (24), we have
Quantum

Geometric

Langlands
Duality from

M-Theory Y 2 ( ) Y 2
S (50( )aﬂ‘]_) & - y - ® (50( )affl) - (50(2N)aﬂk’)
Tan N times
ﬂ—>OHﬂ—HO 8—0||8-+»0
5d/6d AGT Uq(L50(2);(;é“)71) R ® Uq(Lﬁo(Q)Sé)’l) Wq(so(QN)( n) )
~~ aff, k’
N times

(30)



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for

C-D-G, Groups

Higher AGT
Correspon-

dences, Comparing the bottom right-hand corner of (30) with the

W-algebras,

and Higher bottom right-hand corner of (23) for the A groups, and bearing

?:EEEEEZ in mind the isomorphism 50(2N)§£f) = Lg.g, it would mean that
Dhu/la_'ithegfym we ought to have
zbwe 2 (e1, 2,3, 8, ) = (Gg| Ge) (31)
where the coherent state
5d/6d AGT |GG> c W\q(l-gaﬁ) (32)

The relations (31) and (32) define a 5d pure AGT
correspondence for the Cy_1, Dy and Gy groups.



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for Es 7.5

and F; Groups

Higher AGT
Correspon-
dences,

?,:j'ﬁ?gb;:f’ By starting with M-theory on K3 with G = Eg 78 and F4
singularity and its string-dual type IIB on the same K3 (in the

Quantum
Geometric

Amiessdl  presence of fluxbranes), one can, from the principle that the
M-Theory relevant BPS states in both frames ought to be equivalent,
Bl obtain, in the limit e = h = —ep, the relation
* Gy _ L.
IHU(l)h><U(1),,,><T('A/lR“) = "Baff,1> (33)

54/60 AGT Then, repeating the arguments that took us from (7) to (9),
we have
zPmedd(p 3 A) = (cohp|cohp). (34)

inst, G
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for Es 7.5

and F; Groups

In turn, according to the remarks above (14), we find that

Zpure, 5d(h, d,\) = (cirp|cirp) (35)

inst, G

where

[cirp) € LEgag 1 (36)

and LLgaﬂ’l is a Langlands dual toroidal Lie algebra given by
the loop algebra of tg,q ;.
Together, (35) and (36) define a 5d pure AGT correspondence

for the Eg 7.8 and F4 groups in the topological string limit.
They are consistent with (25) and (29).

The analysis for €3 # 0 is more intricate via this approach. Left
for future work.
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An M-Theoretic Derivation of a 6d AGT Correspondence for A Groups

Consider the non-anomalous case of a conformal linear quiver
SU(N) theory in 6d. As explained in [9, §5.1], we have

Zis sy (qus €1, 2, B, Re) = (&Y (21) Bi(22) )72 | (37)

where 3 and R are the radii of S! and S} in T2 = S! x SI,
0B > Rg, and the 6d vertex operators CD( ) have a projection
onto two transverse circles Cg and Cg; in T2 of radius 3 and
Re, respectively, which intersect at the point z. Here, w,v,u
are related to the matter masses.

In the same way that we arrived at (18) and (19), we have
&)S:j}dl@ﬁdg@“'@ﬁd/v —>ﬁcl ®fc2®"'®ﬁcl\/7 (38)

where fc,d is a module over the elliptic Ding-lohara
algebra [29] defined by



An M-Theoretic Derivation of a 6d AGT Correspondence for A Groups

Higher AGT
Correspon-

dences,
W-algebras, - - | m|
and Higher a a = m 1 — Vv
Quantum [ m> n] ( )
Geometric
Langlands

Duality from _ m| _ ¢/m| -
M-Theory T T m(l—vi™)1—t¢ b -
S [bm, bn] = (tg=Tv)m 1= g Om+n,0, bm=0l0) =0

Tan

1— tlml

m m+n,0, 5m>0|®> =0 (39)

} (40)
where [3,, by] =0, and

5d/6d AGT

t = e—iﬁ\/qez, qg= e—iﬁ(q—&-ez—&-\/qez)’ v = e—R%j (41)

In other words,

&S : WY (Lau(N)ag) — WY (Lau(N)ag) (42)

where W9 is a Verma module over WY (Lsu(N).g), an
elliptic affine W(Lsu(N).q)-algebra.



An M-Theoretic Realization of Affine W-algebras and a Quantum

Geometric Langlands Duality

e e To derive W-algebra identities which underlie a Langlands
orrespon-

s duality, let us specialize our discussion of the 4d AGT

2 by correspondence to the A/ = 4 or massless N' = 2* case, so that

Quantum

Geometric we can utilize S-duality. From fig. 6 (and its straighforward

Duality from generalization to include an OMb5-plane), we have the dual
compactifications

4 2 5 5 2 R—0
R ’61,62 X Ta xR ‘53§X6,7 — R ’63;X4,5 X Ta X TNN ‘53;X6,77
~—————

N Mb5-branes 1 M5-branes
(43)
and
We-algebras +
Higher QGL 4 2 5 5 2 R—0
—
R |61,€2 X Ta xR |63;X6,7 — R ‘63:X4,5XT0 X SNN |63;X6,77
—_—— ~
M5-branes + OMb5-plane 1 Mb5-branes
(44)

where T2 = SI x SL.



An M-Theoretic Realization of Affine W-algebras and a Quantum

Geometric Langlands Duality

Higher AGT
Correspon-
dences,

W-algebras, .
and Higher Recall from earlier that

Quantum
Geometric " e L . .
N (D ). r UMe.m) = Wag 1x("0). Rt thy= =
M-Theory m
Meng-Chwan (45)
T Let n = 1. From the symmetry of €1 < € in (43) and (44),
and Lg, ¢ = gag for simply-laced case, we have, from the RHS
of (45),

W k(9) = Waff’Lk(Lg), where rV(k+hY) = (tk + th)—l

We-algebras +

Higher QGL (46)
r¥ = n is the lacing number, and g = su(N) or so(2N).




An M-Theoretic Realization of Affine W-algebras and a Quantum

Geometric Langlands Duality

Higher AGT
Correspon-

dences,
W-algebras, .
and Higher Let n =2 or 3. Effect a modular transformation 7 — —1/rVr

S of T2 in (43) and (44) which effects an S-duality in the 4d

Dustiy from gauge theory along the directions ortohgonal to it. As the LHS
BN of (45) is derived from a topological sigma model on T2 that is
B hence invariant under this transformation, it would mean from

(45) that

Wit k() = Wag tx("g),  where rY(k+h) = ("k+5h)™Y
(47)
WELCRM  h = h(g) and h = h(Lg) are Coxeter numbers; and

Higher QGL
g = Ltso(2M + 1), Lusp(2M) or Lg,.



An M-Theoretic Realization of Affine W-algebras and a Quantum

Geometric Langlands Duality

Higher AGT
Correspon-
dences,
W-algebras,
] (R In order to obtain an identity for g = g, i.e. the Langlands dual

Quantum

Coomenr of (47), one must exchange the roots and coroots of the Lie

i o algebra underlying (47). This also means that h must be
replaced by its dual h". In other words, from (47), one also has

Meng-Chwan

Tan

Watt 4(8) = Wag 1x(tg),  where rV(k+h") = ("k+Lh")
(48)

and g = s0(2M + 1), usp(2M) or gs.

X.V;;h'ff‘z;?;* Clearly, (46) and (48), define a quantum geometric Langlands

duality for G as first formulated by Feigin-Frenkel [15].



An M-Theoretic Realization of g-deformed Affine VV-algebras and a

Quantum g-Geometric Langlands Duality

Higher AGT
Correspon-

dences, . .
WECASSE  From the relations (20) and (21), it would mean that we can
S, write the algebra on the RHS of (22) as a two-parameter

Geometric

Lan.glands algebra
WeTheony W (su(N)). (49)
Meng-Chwan

Tan

Note that as 50(2).q,1 in diagram (30) is also a Heisenberg
algebra like gl(1)ag.1, it would mean that Ugy(Lso(2)ag 1)
therein is also a Ding-lohara algebra at level 1 (with an extra
reality condition) that can be defined by the relations (20) and
(21). Hence, we also have a two-parameter algebra

We-algebras +
Higher QGL

Wik k(s0(2N)). (50)



An M-Theoretic Realization of g-deformed Affine VV-algebras and a

Quantum g-Geometric Langlands Duality

M Note that the change (e1,€2) — (—€2, —€1) is a symmetry of

S our physical setup, and if we let p = g/t = e~#(at<2) then,
?.;alﬁ?;:i' the change p — p~! which implies g < t, is also a symmetry
gﬂlﬁ of our physical setup. Then, the last two paragraphs together
Langlands W|th k + h\/ = —62/61 mean that

Duality from
M-Theory

Meng: Chwan ngfik(g) = W;;”Lk(Lg), where rY(k+h") = (Lk + th)*l
(51)

and g = su(N) or so(2N).

Identity (51) is just Frenkel-Reshetikhin's result in [16, §4.1]
which defines a quantum g-geometric Langlands duality for the

W-algebras + 1 _ |
) simply-laced groups!

The nonsimply-laced case requires a modular transformation of
T2 which effects the swop S} < S, where in 5d, S. is a
preferred circle as states are projected onto it. So, (51) doesn't
hold, consistent with Frenkel-Reshetikhin’'s result.



An M-Theoretic Realization of Elliptic Affine VV-algebras and a

Quantum g, v-Geometric Langlands Duality

Higher AGT

Correspon- Similarly, from (39) and (40), we can express W%" (su(N).g )

dences,

Aol on the RHS of (42) as a three-parameter algebra

an igher

Quantum

Cormn Wikt (su(N)). (52)

Duality from
M-Theory

Meng-Chwan Repeating our arguments, we have
an

Wit (@) = Wi (fa), where rV(k+hY) = ("k+th")
(53)

and g = su(N) or so(2N).

Y.V{;h'ff"éifﬁ Clearly, identity (53) defines a quantum g-geometric Langlands

duality for the simply-laced groups!

The nonsimply-laced case should reduce to that for the 5d one,
but since the latter does not exist, neither will the former.



Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Meng-Chwan
Tan

We-algebras +
Higher QGL

Summary: M-Theoretic Realization of W-algebras and Higher

Geometric Langlands Duality

In summary, by considering various limits, we have

Wit k(8) = Wag1x("g)

0[5 =0
Wik k(@) = Wi, (a)

Rs — 0| Re 0

Wtzq’v

W) = Wit (e)

€ — 0
Z(U(g)crit) = Wcl(Lg)
€ 0
g—of[s-0
€ — 0
| Z(Ug(8)erit) = Wi("0)
€ 0
Re — 0| Rs =0
€ — 0

N
-—_—

€+ 0

Z(Uq,V(ﬁ)crit) = Wqu’V(Lg)

(54)

where g is arbitrary while g is simply-laced.




A Quantum Geometric Langlands Correspondence as an S-duality and a

Quantum W-algebra Duality

P From the fact that in the low energy sector of the worldvolume

itz theories in (43) and (44) that is relevant to us, the

W-algebras, i A

2] (R worldvolume theory is topological along R*, we have
Quantum

Geometric

Langlands

Duality from DR,El X DR,€2 X Z1 and DR,El X DR,€2 X Z1 ’ (55)

N Mb5-branes N Mb5-branes + OMS5-plane

where ¥, = S} x S! is a Riemann surface of genus one with
zero punctures.

Macroscopically at low energies, the curvature of the cigar tips
is not observable. Therefore, we can simply take (55) to be

2 2
SUSY gauge T, o xhixlxXy and TZ ., xhhxbhxX¥;, (56)
theory + ~~ -
g’&'gebfas + N M5-branes N Mb5-branes + OM5-plane

2 _gql 1 :
where TZ . =S¢ X Sg, is a torus of rotated circles.



A Quantum Geometric Langlands Correspondence as an S-duality and a

Quantum W-algebra Duality

Higher AGT Clearly, the relevant BPS states are captured by the remaining

Correspon-

| Sences uncompactified 2d theory on I3 x I which we can regard as a
V-algebras, . .
agd Higher sigma model which descended from the A/ = 4, G theory over
uantum
Geometric I]. X |2 X zl, SO
Langlands
Duality from 5y — L L L €2
o 1 — —
M-Theory bx(Xg")B = Wag 1k (P8)g . "k +"h= T (57)

Now consider

T2 xlhixlhxy¥;, and T2 _ xlixlax¥;, (58)

€1,€2 €1,€2
N Mb5-branes N Mb5-branes + OM5-plane
where Tgm and X are TELQ and X; with the one-cycles
SUSY gauge SWOpped )
hi + .
WM So, in place of (57), we have
QGL
L s — €1
o 1 — v —
H o, (Xig)g = Waﬂ‘yk(g)zl, r'(k+h)=——. (59)

€2



A Quantum Geometric Langlands Correspondence as an S-duality and a

Quantum W-algebra Duality

Higher AGT  ERTRISE (56) and (58) are equivalent from the viewpoint of the

dences, worldvolume theory, we have
W-algebras,

and Higher
Quantum
Geometric
Langlands

Duality from

String Duality —_—
M-Theory px] L
e o, (X6 ) Wit (95,
‘irv\”h“”‘

S-duality | 7 — —%_r rV(k+ h) = (tx + Lh)~1 | W-duality
String Duality L/\ L
H|1><|2 (X ) Waff,Ln( 9)21

(60)

SUSY gauge
theory +

(RS where DV,q . (g) is the “Langlands dual” of Wag . (g), an

QGL

affine W-algebra of level  labeled by the Lie algebra g, and
K+ h=—e/er.



A Quantum Geometric Langlands Correspondence as an S-duality and a

Quantum W-algebra Duality

Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Meng-Chwar

Tan

SUSY gauge O_O

theory +
W-algebras +
=540)

QGL o
OO O = N6




Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Meng-Chwan

Tan

SUSY gauge
theory +
W-algebras +
QGL

A

Quantum Geometric Langlands Correspondence as an S-duality and a

Quantum W-algebra Duality

H

So, we can effectively replace ¥; with Xz in (56), (58), and
thus in (57), (59), whence we can do the same in (60), and

g pu mo

|1><|2(XGg)B = Hﬁxlz(MH(Gv Zg))Bd.cAaBa = Dﬁwilhv (BunG(Zg))
(61)

where My(¥,Xz) and Bung(X,) are the moduli space of ¢

Hitchin equations and %c-bundles on ¥z [18, 19], so in place

of (60), we have

String Duality —
d
Dt (Bung () Warnlo)s,
S-duality | bw = — o (*w+"1h) = sy | FF-duality
mod String Duality —
DLL\U_L/,V (BunLG(zg)) LWaH7LH(Lg)zg

(62)



A Geometric Langlands Correspondence as an S-duality and a Classical

W-algebra Duality

Higher AGT
Correspon-

dences, Let €1 = 0 whence we would also have kK = co and ¥ = 0.

W-algebras,
andaﬁiegi::f Theny (62) becomes

Quantum
Geometric
Langlands
Rl String Duality
M-Theory mod flat
S Dt (BunG(Zg)) MLGC(Zg)
ir‘\ﬂ :
S-duality | KW realization BD formulation | FF-duality
String Duality
flat mod
SUSY gauge DLGC(zg) Mcrit (BunG(Zg))
theory +
W-algebras + (63)

QGL



A Geometric Langlands Correspondence as an S-duality and a Classical

W-algebra Duality

Higher AGT
Correspon-

dences, Adding boundary M2-branes which realize line operators in the

e e gauge theory and performing the chain of dualities would

Geometne replace (43) and (44) with

Langlands

Duality from ° o 2,
4 1 1 5 5 1 1 R—0
0, X Spp X S¢ xR |62;X6,7 <~ R ’62;X4,sxst x S, x TNy ’52;X6,77
N M5 + M2 on o 1 M5-branes + MO on o
(64)
and

4 &1 1 5 5 1 ¢l R—0
R |0762 X sn X stJ xR |62;X6,7 ~—R |62:X4,5><St X Sn X 5NN |€2;X6

~
M5 + OM5 + M2 on o 1 M5 + MO on o

SUSY gauge (65)

theary + Here, the MO-brane will become a DO-brane when we reduce

W-algebras +

95 M-theory on a circle to type IIA string theory [31].



A Geometric Langlands Correspondence as an S-duality and a Classical

W-algebra Duality

As such, in place of (56) and (58), we have
M2 on R+><S},7g

Higher AGT
Correspon- 1
M2 on Ry xSy, o

dences,
W-algebras, A
and Higher
Bueritn To, X I xRy x¥, and T§, xIxRyx¥, (66)
Geometric ~ 2 )€2
DILZTi%Iya?i; N M5-branes N Mb5-branes + OM5-plane
and )
M2 on R+><S},’g

M2 on R+><§,1,7g
T2, x Ix Ry x 580 and T2 x Ix R, x 540 (67)

N M5-branes N M5-branes + OMS5-plane

Here, S},g is a disjoint union of a g number of S} one-cycles of

5.
oo B Similarly, ¥; on the RHS of (57), (59) will now be ngp -3,
ol with a loop operator that is a disjoint union of g number of

QGL
loop operators around its g number of S} one-cycles, each
corresponding to a worldoop of a DO-brane.



A Geometric Langlands Correspondence as an S-duality and a Classical

W-algebra Duality

Higher AGT
Correspon- mod
dences, Dcrit (BUHG (zg))
W-algebras,
and Higher
Quantum
Geometric
Langlands . . . . .
Duality from S-duality | KW realization BD formulation | FF-duality
M-Theory

String Duality

Mﬂat (Zg ) W

Bt Hooft W(tg) “Wilson”

Meng-Chwan
Tan

String Duality

Df2t (Tg) Mg (Bung (Xg)

crit

BWilson )W(g) “t-Hooft”
(68)

There is a correspondence in the actions of 4d line operators
and 2d loop operators:

SUSY gauge -

theory + —

W-algebras + B‘t-HOOﬂZ W(g) “t-Hooft” (69)
QGL

LBWilson <~ W\(Lg) “Wilson” (70)



Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Meng-Chwan
Tan

SUSY gauge
theory +
W-algebras +
QGL

A Geometric Langlands Correspondence as an S-duality and a Classical

W-algebra Duality

Bit_Hooft: Mo — mg + £(ER), where magnetic flux mg and
¢(ER) are characteristic classes that classify the topology of
G-bundles over X, and S2, respectively. Thus, the 't Hooft line
operator acts by mapping each object in D™24(Bung(Z,))
labeled by myg, to another labeled by mg + £(1R).

On the other hand, W(g)wt_Hoofﬁ, is a monodromy operator
which acts on the chiral partition functions of the module

M2ed(Bung(X1)) as (c.f. [32, §3.2])
Zy(a) — Z Aa,p Zg(Pk)- (71)
Pk

where px = a + bhy, where hy are coweights of a
representation R of G; and the A\, p's and b are constants.

Therefore, 17\/\( )t Hooft» Maps each state in
M2ed(Bung(X,)) labeled by a, to another labeled by a + h,

crit
where h is a weight of a representation 'R of LG.




A Geometric Langlands Correspondence as an S-duality and a Classical

W-algebra Duality

Higher AGT
Correspon-

LBWilson : €9 — eo + O, where electric flux ep and 0. are
dences, . L
YOMeSSl  characters of the center of (the universal cover of) ~G.
d High . .
“Quantum Because the eg-labeled zerobranes are points whence the shift

Quantum

Geometric . . . - . .
Langmf\ds eyp — €9 + O.p which twists them is trivial, the Wilson line

SV Al  operator acts by mapping each object in Dﬂat ( Y ) to itself.

Meng-Chwan
Tan “
On the other hand, W(’g) i IS @ monodromy operator

which acts on the chiral partition functions of the module
M (£1) as (c.f. [32, Appendix D])

ZLg(aV) — /\aV ZLg(av), (72)

oo B where the highest coweight vector a” of ‘g labels a submodule,

il and )\, is a constant. Thererfore, W(g)yiso» Maps each
state in Mﬁat( g) to itself.



Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Higher GL

A g-Geometric Langlands Correspondence for Simply-Laced Lie Groups

In the 5d case where 3 — 0, in place of (66), we have

T2, xRy xIxES and T3, xRy xIx XS  (73)

1N Mb5-branes N Mb5-branes + OMS5-plane
where Zg is the compactified Riemann surface ¥, (where
g > 1) with an S! loop of radius 3 over every point.
Then,

o Hixg. (M3 (G Te)) o o =Wi(ta)s,,  (74)
CBOY M 5. (G, Tg)) = MEw (T )tar (75)

(Op, is a noncommutative algebra of holomorphic functions), so

Oh(M%%S.(G, ¥ ¢))-module [<=| circle-valued flat “G-bundle on T,

(76)
Clearly, this defines a g-geometric Langlands correspondence
for simply-laced G!



A g-Geometric Langlands Correspondence for Simply-Laced Kac-Moody

Groups

slgher AT Note that nonsingular G-monopoles on a flat three space M3

Correspon-

o can also be regarded as well-behaved G-instantons on S! x M,
V-algebras,

LT in [33], while nonsingular G-monopoles on M3 = S! x ¥
oty correspond to S!-valued G Hitchin equations on ¥. Since
anglands . . .
Duality from principal bundles on a flat space with Kac-Moody structure
M-Theory . . = .
group are also well-defined [33], a consistent G version of (76)

would be

oh(M%fS‘(E, ¥ ))-module <= circle-valued flat LG-bundle on ¥
(77)
or equivalently,

Oh(Mgl.glsl(G, Y))-module <= circle-valued flat LG-bundle on ¥
R (78)
where ¥ = R x S!. This defines a G version of the g-geometric
Langlands correspondence for simply-laced G.

Higher GL



Quantization of Elliptic-Valued G Hitchin Systems and Transfer

Matrices of a a—type XXZ Spin Chain

A AGT In light of the fact that a %-bundle can be obtained from a

Correspon- . . .
yﬁzrgc:bséas %-bundle by replacing the underlying Lie algebra g of the latter
el bundle with its Kac-Moody generalization g, from (54), it
Geometri would mean that we now have,

anglands
Duality from

M-Theory OH(MSIX81(G, Z)) — Z(XZ(/G7 Z) (79)

Meng-Chwan
Tan

which relates the quantization of an elliptic-valued G Hitchin
system on X to the transfer matrices of a G-type XXZ spin
chain on %!

This also means that

x € M3 E8(6, ) = xq(Vi) = Til2), Vi € Rep [U2T(8)s]
A (®0)

where i = 0,...,rank(g), Ti(z) is a polynomial whose degree
depends on V;, and Ugﬁ(ﬁ) is the quantum toroidal algebra of

g.

Higher GL



Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory

Meng-Chwan
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Higher GL

A Realization and Generalization of Nekrasov-Pestun-Shatashvili's

~

Results for 5d, N' =1 G (G)-Quiver SU(K;) Gauge Theories

Consider instead of the theories in figure (7), an n =1 linear
quiver theory; then the present version of (76) and (54) imply

u € MGTIR = xo(Vi) = Ti(2), Vi € Rep [U2T(g) (e, ]

Sl-mono,k

where Cx = R x S!, i € I, the G Dynkin vertices. (81)
Note that (80) also means that

we MG = xo(V) = Ti(2), Vi € Rep [U2T(§)c,]

St xSl-inst
where Cy =R x S!, i € 7r, the affine-G Dynkin vertices. (82)
Can argue via momentum around S} (counted by DO-branes)
— 2d CFT energy level correspondence that degree of T; (T;)
is K,' (aK,-).
(81)/(82) are Nekrasov-Pestun-Shatashvili's main result in [21,
§1.3] which relates the moduli space of the 5d G/G-quiver
gauge theory to the representation theory of Ugff(g)/Uf;ﬁ(ﬁ)!




Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory
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Higher GL

A g, v-Geometric Langlands Correspondence for Simply-Laced Lie

Groups

In our derivation of the 6d AGT W-algebra identity in diagram

(54), the 2d CFT is defined on a torus S' x S} with two
punctures at positions z; 5 [9, §5.1]. i.e. X15. Here, St
corresponds to the decompactified fifth circle of radius 5 - 0,
while S} corresponds to the sixth circle formed by gluing the
ends of an interval |; of radius Rg much smaller than 3. So, we
effectively have a single decompactification of circles, like in
the 5d case, although the 2d CFT states continue to be

projected onto two circles of
of (76), we have

radius 5 and Rg, whence in place

On(M$s (G, T1.2))-mod &=

elliptic-valued flat LG-bundle on 210

(83)

Clearly, this defines a g, v-geometric Langlands correspondence

for simply-laced G!



Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
Geometric
Langlands
Duality from
M-Theory
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Higher GL

Quantization of Circle-Valued G Hitchin Systems and Transfer Matrices

of a G-type XYZ Spin Chain

Consequently, from diagram (54), if Tuy,(G,X12) is the
polynomial algebra of commuting transfer matrices of a G-type
XYZ spin chain with Ug,,(§) symmetry on X1 5, where
i=1,...,rank(g), we now have

On(M§s.(6,T12)) <= Tuys(G,T12) (84)

which relates the quantization of a circle-valued G Hitchin
system on X > to the transfer matrices of a G-type XYZ spin
chain on X1 5!

This also means that

x € M s.(G,T12) <= xqu(Vi) = Ti(2), Vi € Rep [UZL(a)s,,]

(85)
and T;(z) is a polynomial whose degree depends on V;.




Higher AGT
Correspon-
dences,
W-algebras,
and Higher
Quantum
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Langlands
Duality from
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Higher GL

A g, v-Geometric Langlands Correspondence for Simply-Laced

Kac-Moody Groups

Note that with regard to our arguments leading up to (83), one
could also consider unpunctured X1 instead of X5 (i.e.
consider the massless limit of the underlying linear quiver
theory). Consequently, in place of (77), we have

On(MS' (G, %1))-mod <= elliptic-valued flat LG-bundle on X,

or equivalently,

(86)

OR(M3 25'(G,%1))-mod

—

elliptic-valued flat L/a’—bundle on X

(87)

This defines a G version of the g-geometric Langlands
correspondence for simply-laced G.




Quantization of Elliptic-Valued G Hitchin Systems and Transfer
Matrices of a a—type XYZ Spin Chain

I-ggher AGT
orrespon- i .

dences, Via the same arguments which led us to (79), we have
W-algebras,
and Higher
Quantum
Geometri S:l ><S1 a

Longlands On(Mpg” (G, 21)) <= Tiya(G, 1) (88)
Duality from
M-Theory

WS which relates the quantization of an elliptic-valued G Hitchin
Tan system on X to the transfer matrices of a G-type XYZ spin

chain on X!

This also means that

x € MS xSt (G zl) — Xq V( ) T(Z) \A/, € Rep [quflv(ﬁ)21]

(89)
where i =0, ..., rank(g), Ti(z) is a polynomial whose degree
depends on V and UZ!L(§) is the elliptic toroidal algebra of g.

Higher GL
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Higher GL

A Realization of Nekrasov-Pestun-Shatashvili's Results for 6d, ' =1 G

( )-Quiver SU(K;) Gauge Theories

Note that (85) also means that

ue MOy Xqv(Vi) = Ti(z), Vi€ Rep [Ug}l\,(g){cx}%q]

Sl-mono,k
90
where Cx = S! x St and i € Ir. (90)
Note that (89) also means that
G,Cx,k \/ T \/
ue 9:)?SlXSl inst = Xav (V) T,'(Z), Vi € Rep [Uell ( )Cx]
(91)

where Cy, = S x Sl and i € Jr.

Can again argue via momentum around S (counted by

Do- branes) < 2d CFT energy level correspondence that degree
of T; (T;) is Ki (aK;).

(90)/(91) are Nekrasov-Pestun-Shatashvili's main result in [21,
§1.3] which relates the moduli space of the 6d G/G quiver
gauge theory to the representation theory of USH( )/Uf,“(g)!
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Higher AGT m We furnished purely physical derivations of higher AGT

Comespon correspondences, W-algebra identities, and higher
o geometric Langlands correspondences, all within our
Quantum M-theoretic framework.

eometric
Langland . . .
Duality from m We elucidated the connection between the gauge-theoretic
M-Theory . . .

realization of the geometric Langlands correspondence by

Meng-Chwan - . . .. .

Tan Kapustin-Witten and its original algebraic CFT

formulation by Beilinson-Drinfeld, also within our
M-theoretic framework.

m Clearly, M-theory is a very rich and powerful framework
capable of providing an overarching realization and
generalization of cutting-edge mathematics and
mathematical physics.

m At the same time, such corroborations with exact results
in pure mathematics also serve as “empirical” validation of
Gl string dualities and M-theory, with the former as the “lab™.
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