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1. What we did

ﬂ. We investigated phase structure of\
Chern-Simons (CS) fundamental matter

theories on S'xS2 in large N ‘t Hooft
limit.

B. Based on A, we observed the
Bose-Fermi duality between CS
theory coupled to bosons and the
one coupled to fermions




A. Investig
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A-1. Outline of Path integration of

a CS matter theory on S' x S?
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Effective potential depending on gauge fields
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A-2 Effective action in high termperature

In high temperature limit, the effective action will be
simple one depending only on holonomy along S’

We can calculate the large N free energy by the
Blau-Thompson method.

Nucl.Phys. B408 (1993) 345-390.




A-3 Matrix integration form of the free
energy by the Blau-Thompson method.
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Unitary matrix model in large N
governed by holonomy eigenvalue
distribution




A-3 Matrix integration form of the free
energy by the Blau-Thompson method.
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A-3 Matrix integration form of the free
energy by the Blau-Thompson method.
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. Constraining holonomy eigenvalue o to be discrete




A-3.Figure for location of eigenvalue

@:Indicating the location of the eigenvalues

By the effect of the delta functions

A 4

@ must be skewed by comb located at (21Tn/k)

n:integer

N I I I X

(04




Due to vandermond determinant causing the repulsive force

between eigenvalues
Only one eigenvalue can be skewed with one comb,

And then only one eigenvalue reside within the interval 21t/k
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‘t Hooft coupling
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Behavior of eigenvalue density p(x)

p(@) p(x) p(xX) p(o)
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p(o) clump in the higher temperature by the stronger
attractive force by the effective potential.




Behavior of eigenvalue density p(x)

Zero point of p(x)

Gross-Witten-Wadia
type phase transition
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Behavior of eigenvalue density p(x)

Combination of two types of
phase transitions
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Phase structure of CS matter theories
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B. Bose-Fermi duality

bosons see the | fermions
(critical boson) duality K(regularfermion)

[CS theory coupled to} “ (cs theory coupled to




B-2. Free energy of both theory

» Free energy for critical boson theory
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B-2. Matching of the free energy

» We have checked that they are matched
N k—N
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under the following relationship
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B-2. Matching of the free energy

» We have checked that they are matched
FY = Fh

i,

under the following relationship
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| will explain that

the combination of the two types of phase transition is
crucial to make the duality valid.
. particularly the comb. is important for this relationship.



B-3 duality relationship and the phase structure
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B-3 duality relationship and the phase structure
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B-3 duality relationship and the phase structure

Zero point
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B-3 duality relationship and the phase structure

1
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To satisfy the above equation,
we need to prepare

= Saturation
/ 2T

— 7 To satisfy the above equation, fitting of
(Zero point) & (upper limit saturation) is crucial.—crucial for duality







