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1) Introduction

Use of Entanglement Entropy (EE)

e A quantum order parameter (~a generalization of
"Wilson loops’) wp Classify quantum phases.

Entropy for non-equilibrium systems.

e A useful bridge between gravity and cond-mat. systems.

Gravity 4= Entanglement 4mm) Cond-mat. sysytems

g, AdS/CFT S, = Area(y,) \‘P)
4G,

Holographic EE (HEE)




Information = Energy ?

15t [aw of thermodynamics: T = dS = dE
Temp. Information Energy

= Can we find an analogous relation in any quantum
systems which are far from the equilibrium ?

Maybe: Tent = dSA = dEA ??
/ Information in A Energy in A
What ? = EE

Can we observe EE ??

» The main motivation of this talk.



Holographic Entanglement Entropy (HEE) [Ryu-TT 06]

—dt?+ Y dx? +dz?
g, A0 | as, —ry —
4G

VA is the minimal area surface
(codim.=2) such that

0A=0y, and A~y, .

homologous

Note: In time-dependent b.g.,
we need to employ the covariant
version [Hubeny-Rangamani-TT 07].

. — extremal surface z>¢ (UV cut off)




Verification of HEE

e Confirmations of basic properties:
Area law, Strong subadditivity (SSA), Conformal anomaly,....

e Direct Derivation of HEE from AdS/CFT:

(i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]

(ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, cf. Fursaev 06]
(iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]

(iv) General time-dependent AdS/CFT - Not yet.
[But, non-trivial evidences of SSA: Allais-Tonni 11, Callan-He-Headrick 12, Wall 13]

e Corrections to HEE beyond the supergravity limit:

[Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,..... ]
[1/N effect: Barrella-Dong-Hartnoll-Martin 13 ]
[Higher spin gravity: de Boer-Jottar 13, Ammon-Castro-lgbal 13]
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(2 Local Excitations and HEE

[Nozaki-Numasawa-TT 13]

We would like to study the relation between the EE
and energy when we excite the system locally.

Localized Excitations

— Calculate
Excited Ground
AS, = gBeied _g¢

~The amount of quantum
Information of excitations
(UV finite)




Local Quenches (Local excitations)

Joint
Original Local Quench: = = o e
[Calabrese-Cardy 07]
Generalization Excite
(Local Excitations): 4 = "
a
\ y,
Y

We consider this kind of
example using the AdS/CFT.



A setup of holographic local guenches

A simple model of holographic local quench:
— a free falling particle (mass m) in AdSd+2.

42 _ R2. dz® —dt® + dx?
Boundary AdS - 22

II \—}:ﬁ ————————————— > 2 2
: >z  Trajectory: Z(t) = \/’[ +a

e
2(6) =P +a?

z=q Ol~ the size of localized excitations




Construction of Back-reacted Solutions

We use the method noticed by [Horowitz-Itzhaki 99].
Start with the global AdS BH:

2

(M o G,mR?)

ds? = — f (r)dz? +—

dr’+r?dQ%,  f(r)=r*+R*-M/r%>
t(r)

R2a/ B (42 2 42
VR +r? .cost = ef e (27 +X t),
27

i Rt

VR +r1?% .sing = —,

Coordinate transformation Z

Rx. .
- rQ =— (i=12,..,d),
i Z
©
5 >/ —~R%" +e”(2° +x* -t?)
o rQ,,, = :
0 21
(%2
©
<

Asymptotic AdS space (M=0 - Pure AdS)



Energy density via AdS/CFT

Basic picture:

‘Entangled Pair

’

We can confirm this entanglement structure by calculating ‘'entanglement density’.



Time Evolution of HEE in AdS3/CFT2
[Case 1]

AS "

0.08 |-

Boundary AdS T

: z
I
PR et :

/'/ T Py 002 -
Eak () =Nr+a’

M=0.01, R:]_’ |=5

/2

Boundary ’ , __(l)z\c’;mg | : t
z=q - . 5 10




Exact result in AdS3 Assume M<<R?2

i R : 7Z'R2—|V|—'/
o

~ 2MR = 2A.
JRZ—M 2R

C
AS™ =—]o
3 g

Summary:

The amount of quantum information

of Localized (weak) excitations in CFT ~ E"«a
(*fire ball’ of gluons) Energy Size

* I Q Actually, this relation is true

in any dimension in AdS/CFT.




Comment

If we take the limit I>>t>>a in the case 2, we find

S —Elog£+glogl+const
6 "a 3 a |
x ,

Y
Subsystem A

cf. 2d CFT result for local quenches by the joint procedure

S —Elog£+glogl+const
"3 7a 6 a |



@ Energy flow and HEE [rrivedi-Narayan-TT 12]

—2dxdx + Q-2 (dx )+ 3 dx? + dz?
AdS plane waves: ds;,, =R*: ( - S+ 2 .

z
‘ AdS/CFT
A simple model of excited states T,, oc Q>0 (energy flux).

= Two choices of strip subsystems in this anisotropic system

(x* =txy)

[Case 1] [Case 2]

>Y I Energy flow



[Casel] = There is a phase transition.

AS , Iz Disconnected solution in AdS wave
i 14 I

Pure AdS5

_os5k
_10F

_15F

Connected solution in AdS5 wave

-2.0

[Case2] = HEE increases due to the energy flux.
But smaller than thermal entropy. (' semi-extensive’)

AS, ~V, , -/Q 182 (<1,

In particular, d=3 (AdS5), we obtain AS, ocV, -logl .

[= 4 dim. Hyperscaling violating geometry with 8=1 via a null compactification,

which was found in Narayan 12, Singh 12]



(4 “1st Law’ Relation between EE and Energy

[Bhattacharya-Nozaki-Ugajin-TT 12]

We want to find a universal relation in CFTs between
ASA _ SExcited . Siround and AEA _ J‘A dXtht
in more general setups.

We will assume the excited state is (approximately)
translationally invariant and isotropic.



Holographic Calculation

Consider an asymptotically AdSd+2 background
(= an excited state in CFTd+1):

R? d
ds® =?(— f (z)dt* + g(z)dz? +Zi_1dxi2) ,

f(2)=1-mz°"+..., g(2)=1+mz®"+...

We do not care the details of IR.
de:lrn\ ,,

: ~
162G

& AdS bdy
Energy density

=T, =

L\/

J V

(@)




Holographic Prediction

Consider an exited state in a CFT which has an approximate

translational and rotational invariance.

If the size of the subsystem A (=] ) is small enough such that
T, 19" <<R%/G,, ~ O(N?),
then the following 15t [aw’ like relation is satisfied:

T AS,=AE,, T, ==

ent ent — y !
Info. Energy |

Note 1: The constant c depends only on the geometry of A.
Note 2: For more general critical points with the
dynamical exponent z, we have T_ =c-|™7.




More Progresses

If the rotational invariance is broken, AS, is a linear combination
of not only Ttt but also other components of EM tensor.

[Pointed out in Guo-He-Tao 13, Allahbakhshi-Alishahiha-Naseh 13,
Blanco-Casini-Hung-Myers 13;
This problems does not occur when A= a round ball]

However, we can generally show the following equivalence
AS, =AH, (=-Tr[op,-logo,]),
Modular Hamitonian

as pointed out in
[Blanco-Casini-Hung-Myers 13, Wong-Klich-Pando Zayas-Vaman 13]



(5 What is the Einstein equation for HEE ?

[Nozaki-Numasawa-Prudenziati-TT 13, Bhattacharya-TT work in progress]

The "1t law-like’ relation appears only when the size of A is small.

» What can we say if the size of subsystem is not small ?

This is related to a basic question in the AdS/CFT:

Gravity on AdS - CFT
g, (1,%,2) ADSICET 5 (1, %,1)
Einstein eq. @)  What?

Below we study a HEE counterpart of perturbative Einstein eq.
assuming small excitations of a CFT.



AdS4/CFT3

Let A be a round ball with radius I. Its center is situated at (t, X).
The perturbative Einstein equation is rewritten as follows

R, —leW+AgW = T

7%

Kinetic terml l C.C. l Matter fie;i congibutions
e
(az -0, —0: _I_j ASA(t, X,1) =(0)O)

Note: There are no time derivatives.
It looks like an EOM for a scalar on a time slice of AdS4.
= This gives a constraint for HEE at a fixed time.
The time evolution is determined by IR bdy conditions.



AdS4 Schwarzschild BH

When the size of the subsystem is very large , we find

(07 -8, —22)AS, (t, %,1) = (O)(O)

This coincides with the holographic result for flat space.

AdS3/CFT2
In AdS3 gravity, we have two constraints: A
(6% -2 )AS,,(t, x,1) =(0)(0),
x- X+l

(af 2 _Iij AS, (t, 1) = (0)(O)

[Confirmed in CFT2 by Wong-Klich-Pando Zayas-Vaman 13]



Intuitive interpretation of these constraints

Hyperbolic PDE: (@,2 —8§)ASA(’[, X,1)~0
= AS, oc f(I-|x])+g(l+]x]).

Local excitations

—— ~___“ " X
AS , becomes non-trivial only when A intersects
with the excited region < | =% X|.



®) Conclusions

e We derived a universal relation between the EE and
the energy of excited states for small subsystems in CFTs.
— This looks analogous to the first law in thermodynamics.
What will happen in non-conformal theories ?

 For generic subsystems, the property of EE in a CFT depends
on the details of the theory.

- We found that the AdS/CFT relates the perturbative
Einstein equation to a certain constraint equation of EE.
More precise interpretations of this constraint ?
Beyond the perturbation theory ?



