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Sometime, a few months ago.

The Elders of the String Theory:

We would like to ask you to review the recent progress regarding “exact
results in supersymmetric gauge theories”.

Me:

That is a great honor. I’ll try my best. But, in which dimensions? With
how many supersymmetries?

I never heard back.
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So, I would split the talk into five parts, covering

D-dimensional SUSY theories for D = 2, 3, 4, 5, 6

in turn. Each will be about 10 minutes, further subdivided according to
the number of supersymmetries.

I’m joking. That would be too dull for you to listen to.
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Instead, the talk is organized around three overarching themes
in the last few years:

• Localization

Partition functions exactly computable in many cases.
Checks of old dualities and their refinements.
New dualities.

• ‘Non-Lagrangian’ theories

With no known Lagrangians
or with known Lagrangians that are of not very useful
Still we’ve learned a lot how to deal with them.

• Mixed-dimensional systems

Compactification of 6d N=(2, 0) theories …
Not just operators supported on points in a fixed theory.
Loop operators, surface operators,…
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Contents

1. Localization

2. ‘Non-Lagrangian’ theories

3. 6d N=(2, 0) theory itself
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Topological quantum field theory [Witten, 1988]

• 4d N=2 theories have SU(2)l × SU(2)r × SU(2)R symmetry.
• Combine SU(2)r × SU(2)R → SU(2)r′

• This gives covariantly constant spinors on arbitrary manifold.

Localization of gauge theory on a four-sphere and
supersymmetric Wilson loops [Pestun, 2007]

• 4d N=2 SCFTs can be put on S4 by a conformal mapping.
• Guided by this, modified Lagrangians of arbitrary 4d N=2 theories

so that they have supersymmetry on S4.

Are they very different? No.
[Festuccia,Seiberg, 2011] [Dumitrescu,Festuccia,Seiberg, 2012] …
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We can put a QFT on a curved manifold, because Tµν knows how to
couple to gµν , i.e. non-dynamical gravity backgrounds.

A supersymmetric QFT

• has the energy-momentum Tµν , can couple to gµν
• has the supersymmetry current Sµα, can couple to ψµα
• if it has the R-currrent JRµ , can couple toARµ
• if it has a scalar component XAB , can couple toMAB

Depending on the type of the supermultiplet containing Tµν , can couple
to various non-dynamical supergravity backgrounds.

[Witten 1988] used gµν and ARµ while [Pestun 2007] also used MAB .
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Take a QFT Q that is Poincaré invariant.

Consider a curved manifold M with isometry ξ.

Then ⟨δξO⟩ = 0 for any O.

Take a QFT Q that is supersymmetric.

Take a non-dynamical supergravity background M
with superisometry ϵ.

Then ⟨δϵO⟩ = 0 for any O.
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Add to the Lagrangian a localizing term:

S → S + t

∫
ddxδϵO,

such that
δϵ

2O = 0, δϵO ≃
∑
ψ

|δψ|2.

Then
∂

∂t
logZ =

∫
ddx⟨δϵO⟩ = 0.

In the large t limit, the integral localizes to the configurations

δψ = 0

parameterized by some space M = ⊔Mi. Then

Z =
∑
i

∫
Mi

ZclassicalZquadr. fluct.
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This has been carried out in many cases.

• many papers on topologically twisted theories
• Ω-backgrounds on non-compact spaces such as Rd,…
• S2, RP2,…
• S3, S3/Zk, S2 × S1,…
• S4, S3 × S1, S3/Zk × S1,…
• S5, S4 × S1, general Sasaki-Einstein five-manifolds,…
• cases above with boundaries, codimension-2 operators, …

Note that you need to specify the full supergravity background.

Only the topological property of δ2ϵ matters: there are
uncountably-infinite choices of values of the sugra background
with the same partition function.

[Witten 1988][Hama,Hosomichi 2012]
[Closset,Dumitrescu,Festuccia,Komargodski 2013]
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Many great developments on localization in the last couple of years.

For example,

• Connection to holography
→ [Freedman’s talk], [Dabholker’s talk]

• Better understanging of 2d non-abelian gauge theories
→ [Gomis’s talk]

• Extremely detailed understanding of 3d theory on S3

→ [Mariño’s talk]
• and much more ...

Let me say a few words about localization of 5d theories.
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Localization of five dimensional gauge theories
minimal SUSY maximal SUSY

susy literature N=1 N=2
sugra literature N=2 N=4

Caveat

• 5d gauge theories are all non-renormalizable.
• What do we mean by the localization of the path integral, then?

My excuses

• If there’s a UV fixed point, we’re just computing the quantity in the
IR description

• If the non-renormalizable terms are all δϵ-exact, they don’t matter.
• Someone in the audience will think about it.
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First note trF ∧ F is a conserved current in 5d.

Minimal SUSY
5d SCFT with

ENf+1 symmetry.
SU(2) with Nf flavors

SO(2Nf) symmetry.
mass deform.
m = 1/g2

Instanton charge enhances the flavor symmetry.

Maximal SUSY

6d N=(2, 0) SCFT 5d max SYM
put on S1

mKK = 1/g2

Instanton charge is the KK charge.

Many nontrivial checks using localization and topological vertex.
Heavily uses the instanton counting. [Nekrasov]

14 / 47



S4 × S1

[Kim,Kim,Lee] [Terashima] [Iqbal-Vafa] [Nieri,Pasquetti,Passerini]
[Bergman,Rodriguez-Gomez,Zafrir][Bao,Mitev,Pomoni,Taki,Yagi]
[Hayashi,Kim,Nishinaka][Taki][Aganagic,Haouzi,Shakirov]

S5

[Kallen,Zabzine][Hosomichi,Seong,Terashima][Kallen,Qiu,Zabzine][Kim,Kim]
[Imamura] [Lockhart,Vafa] [Kim,Kim,Kim] [Nieri,Pasquetti,Passerini]

Sasaki-Einstein manifolds

[Qiu,Zabzine][Schmude][Qiu,Tizzano,Winding,Zabzine]
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5d E6 theory

SU(2) with 5 flavors

mass deform.

Z(S1 × S4) computable by gauge theory or by refined topological string

[Kim,Kim,Lee] [Bao,Mitev,Pomoni,Yagi,Taki]
[Hayashi,Kim,Nishinaka][Aganagic,Haouzi,Shakirov]

Generalization to other gauge theories
[Bergman,Rodriguez-Gomez,Zafrir]
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6d N=(2, 0)
on S4 × C

5d max-susy YM
on (S4/S1) × C

2d Toda theory
on C

class S theory
given by C

on S4

[Gaiotto,Moore,Neitzke]

[Cordova,Jafferis]
talk yesterday!

[Alday,Gaiotto,YT]
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6d N=(2, 0)
on S1 × S3 × C

5d max-susy YM
on S3 × C

2d q-deformed YM
on C

class S theory
given by C

on S1 × S3

[Gaiotto,Moore,Neitzke]

[Fukuda,Kawano,Matsumiya]

[Gadde,Rastelli,Razamat,Yan]

18 / 47



6d N=(2, 0)
on S1 × S3 × C

5d max-susy YM
on S3 × C

2d q-deformed YM
on C

class S theory
given by C

on S1 × S3

[Gaiotto,Moore,Neitzke]

[Fukuda,Kawano,Matsumiya]

[Gadde,Rastelli,Razamat,Yan]

18 / 47



6d N=(2, 0)
on S3 ×X

5d max-susy YM
on S2 ×X

3d complex CS
on X

class R theory
given by X

on S3

[Dimofte,Gaiotto,Gukov]

[Cordova,Jafferis][Lee,Yamazaki]

[Dimofte,Gaiotto,Gukov]
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n-dimensional susy gauge theory on Sn → matrix integral =0d QFT

n-dimensional susy gauge theory on Sd → (n− d)-dimenisonal QFT

Let’s call it partial localization.

6d N=(2, 0) theory on S1 → 5d max-susy YM

My gut feeling is that this is an instance of partial localization.
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A non-Lagrangian theory, for the purpose of the present talk, is
a theory such that the Lagrangian is not known and/or agreed upon.

It’s a time-dependent concept.

Given a non-Lagrangian theory, two obvious approaches are

• to work hard to find the Lagrangian
• to work around the absence of the Lagrangian

The first had a spectacular success in 3d [Schwarz,BLG, ABJM,…]

The second perspective is there for those who can’t wait.
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The 6d N=(2, 0) theories are the prime examples. I’ll come back to the
6d theory itself later.

First consider its compactification on a Riemann surface

C :

and get a 4d theory. Usually non-Lagrangian.

Called the class S construction, or the tinkertoy construction.
[Gaiotto,Moore,Neitzke] [Chacaltana,Distler]
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Decompose it into tubes and spheres [Gaiotto]

a

i

u

a

i

u

TN SU(N)3 TN

Tubes

• R-symmetry twist on C was originally chosen to preserve 4d N=2
→N=2 vector multiplets from tubes
[Gaiotto,Moore,Neitzke][Gaiotto]

• R-symmetry twist on C can be chosen so that to have 4d N=1
→ tubes can give either N=1 or N=2 vector multiplets
[Bah,Beem,Bobev,Wecht],[Gadde,Maruyoshi,YT,Yan],[Xie,Yonekura]
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Spheres

TN

a

i

u

SU(N)1 ↷ a= 1, . . . , N
SU(N)2 ↷ i= 1, . . . , N
SU(N)3 ↷ u= 1, . . . , N

Introduced five years ago [Gaiotto].

An 4d N=2 theory with SU(N)3 symmetry.

T2: a theory of freeQaiu.

T3: the E6 theory of Minahan and Nemeschansky. In terms of SU(3)3,

Qaiu, Q̃aiu, µab , µ̃ij , µ̂
u
v , all dimension 2.

TN : not much was known.
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Five years later: the spectrum of BPS operators known,
thanks to the relation of the index with 2d q-deformed Yang-Mills
[Gadde,Pomoni,Rastelli,Razamat,Yan].

Using that as a guide, the chiral ring relations can be worked out.

Generators on the Higgs branch side:

dimension name
2 µab , µ̃

i
j, µ̂

u
v

1(N − 1) Qaiu
2(N − 2) Q[ab][ij][uv]

...
...

k(N − k) Q[a1···ak][i1···ik][u1···uk]
...

...
(N − 1)1 Q[a1···aN−1][i1···iN−1][u1···uN−1] = Q̃aiu
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TN is well understood to such a degree that,
although it is non-Lagrangian, we can even analyze susy breaking.

• A chiral ring relation

tr(µab )
k = tr(µ̃ij)

k = tr(µ̂uv )
k

for any k.
• Couple one N=1 SU(N) vector multiplet to the index a.
i and u remain flavor.

• β-function = the same as Nc = Nf .
• Expect the deformation of the chiral ring, and indeed

tr(µ̃ij)
N = tr(µ̂uv )

N + Λ2N .

• When N = 2, it reproduces the deformation of the moduli space of
SU(2) with 2 flavors.
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• Add gauge singlets M̃ i
j and M̂u

v , and add the superpotential

W = M̃ i
j µ̃
j
i + M̂u

v µ̂
v
u,

forcing µ̃ = µ̂ = 0.
• This contradicts the deformation of the chiral ring

tr(µ̃ij)
N = tr(µ̂uv )

N + Λ2N .

and breaks the supersymmetry. You can check there’s no run-away.
• When N = 2, this is the susy breaking mechanism of [ITIY].

Typically, various phenomena known to work for SU(2) = Sp(1)
and in general Sp(N), but not for SU(N), are now possible if we
use TN instead of the fundamentals.
[Gadde,Maruyoshi,YT,Yan][Maruyoshi,YT,Yan,Yonekura]

28 / 47



My personal impression is that by allowing TN and other
non-Lagrangian materials, we can have lots more fun in doing
supersymmetric dynamics.

• TN and its variants
• Generalized Argyres-Douglas theories [Zhao,Xie]
• (Γ,Γ′) theories [Cecotti,Vafa,Neitzke]
• Dp(G) theories [Cecotti,Del Zotto,Giacomelli]

The known ones are N=2, but we can mix it with N=1 gauge fields etc.

There will be genuine N=1 non-Lagrangian materials, too.
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Lagrangian 
theories

Supersymmetric theories
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each can give complementary info
no one thing privileged

S2

x

2 + y

2 + z

2 = 1

{(z, w) ⇠ (cz, cw)}

dr2 + r2 sin2 ✓d✓2
patching two disks
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a QFT Q

Lagrangian 
gauge theory
description 1

Lagrangian 
gauge theory
description 2

construction
using

6d theory

holographic
construction

each can give complementary info
no one thing privileged
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Let’s now talk about the 6d theory itself. Recall the basics:

LA

LB su(N)

5d su(N)

4d su(N),
τ = iLA/LB

5d su(N)

4d su(N),
τ = iLB/LA

S-dual
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Note that su(N) has Z2 symmetry M → MT . Using this, we find

LA

LB su(2N)

5d so(2N+1)

4d so(2N+1),
τ = iLA/LB

5d su(2N)

4d usp(2N),
τ = 2iLB/LA

S-dual
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6d N=(2, 0) theory of type su(2N) has a Z2 symmetry, such that

6d su(2N) theory

5d su(2N) theory 5d so(2N + 1) theory

S1 without Z2 twist S1 with Z2 twist

Note that so(2N + 1) ̸⊂ su(2N).

• Have you written / are you reading a paper
on the Lagrangian of 6d N=(2, 0) theory?

• If so, take 6d theory of type su(2N).
• Put it on S1 with Z2 twist.
• Does your Lagrangian give so(2N + 1)?
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Next, Let’s study the question

LA

LB su(N)?

5d su(N)?

4d SU(N),
τ = iLA/LB

5d su(N)?

4d SU(N)/ZN ,
τ = iLB/LA

S-dual
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6d N=(2, 0) theory of type su(N)
doesn’t have a unique partition function.

It only has a partition vector.

It’s slightly outside of the concept of an ordinary QFT.

[Aharony,Witten 1998][Moore 2004][Witten 2009]
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For a 4d su(N) gauge theory on X , we can fix the magnetic flux

a ∈ H2(X,ZN)

and consider Z(X)a.

Consider 6d N=(2, 0) theory of type su(N) on a 6d manifold M .

One wants to fix
a ∈ H3(M,ZN)

so that
∫
C
a ∈ ZN is the magnetic flux through C.

Due to self-duality, you can’t do that for
two intersecting cycles C, C′ with C ∩ C′ ̸= 0,
because they’re mutually nonlocal.

Instead, you need to do this:

38 / 47



• SplitH3(M,ZN) = A⊕B, so that∫
M
a ∧ a′ = 0 for a, a′ ∈ A ,∫

M
b ∧ b′ = 0 for b, b′ ∈ B .

• Then, you can specify the flux a ∈ A or b ∈ B,
but not both at the same time.

• Correspondingly, we have
{Z(M)a|a ∈ A} and {Z(M)b|b ∈ B}

related by
Za ∝

∑
b

ei
∫
M a∧bZb.

This can be derived/argued in many ways.
But I don’t have time to talk about it today.
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In other words, there is a partition vector |Z⟩ such that

Za = ⟨Z|a⟩, Zb = ⟨Z|b⟩,

where

{|a⟩; a ∈ A} and {|b⟩; b ∈ B} with ⟨a|b⟩ = ei
∫
M a∧b

are two sets of basis vectors.

It’s rather like conformal blocks of 2d CFTs. [Segal]

Theories that have partition vectors rather than partition functions are
called under various names: relative QFTs, metatheories, etc …

[Freed,Teleman] [Seiberg]...
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6d theory of type su(N) is slightly meta.

So, if it’s just put on T 2, it’s still slightly meta.

On M = T 2 × Y , you need to write T 2 = S1
A × S1

B , and split

H3(M,ZN) ⊃ H2(Y,ZN)A ⊕H2(Y,ZN)B,

and declare you takeH2(Y,ZN)A.

You need to make this choice
in addition to the choice of the order of the compactification.

This choice picks a particular geniune QFT, by specifing
a particular gauge group SU(N)/Zk and discrete θ angles
discussed in [Aharony,Seiberg,YT].

Reproduces the S-duality rule of [Vafa,Witten].
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This analysis can be extended to all class S theories. [YT]

6d theory on a genus g surface C
= 2g copies of TN theories coupled by 3g su(N) multiplets.

You can work out

• possible choices of the group structure on su(N)3g,
• together with discrete theta angles,
• how they are acted on by the S-duality ...
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Let’s put the 6d theory of type su(N) on M = S3 × S1 × C.

As class S theory, the choice of the precise group of su(N) vector
multiplets doesn’t matter, as there are no 2-cycles on S3 × S1.

Still, we have

H3(M) = H3(S3) ⊕H3(S1 × C).

So, as components of the partition vector, we have

{Za|a ∈ H3(S3) = ZN}

and
{Zb|b ∈ H3(S1 × C) = ZN}

such that
Za =

∑
b

ei2πab/NZb.

What are these additional labels a and b?
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This means that 4d class S theory T [C] has a ZN symmetry.

Za = trHa(−1)F e−βH .

is the partition function restricted to ZN -charge a.

Recall

T [C] on S3 × S1 = 2d q-deformed su(N) Yang-Mills on C.

Then
Zb =

∑
a

ei2πab/NZa

is the 2d q-deformed su(N) YM with monopole flux b on C.
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The same subtlety arises in various places.

TN on S1 N N−1 3 2 1

N−1 3 2 1

N−1 3 2 1

mirror

TN ↔ central node is SU(N)/ZN
TN coupled to ZN gauge field ↔ central node is SU(N)

Can be seen by performing 3d localization on S3, S2 × S1, lens space...
[Razamat,Willet]

These subtleties become more relevant, because with localization we can
now compute more diverse quantities.
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Summary

• Localization technique has matured.
Gives us lots of checks of old and new dualities.

• Non-Lagrangian theories might have satisfactory Lagrangians
in the future. But you don’t have to wait.
We are learning to analyze QFTs without Lagrangians.

• 6d N=(2, 0) theories are still mysterious.
have the partition vectors, instead of the partition functions.
Subtle but important on compact manifolds.

I would expect steady progress in the coming years.
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Happy 20th anniversary,
Seiberg-Witten theory!
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