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1. Introduction

p-adic numbers are a completion of the rationals with respect to a funny norm:

v

P =p "’ assuming ptfa and p1{b. (1)

p

b

The key intuition is that the prime p is small but not zero:

0[, =0 (by fiat) la|,=1 fora=1,2,3,...,p—1
1 ) 1 5 1 (2)
\p\p:];a \p\zﬁ, ’P’:E

A general non-zero p-adic number can be written as a formal series

2=p'> anp™, ay#0, vEL. (3)
m=0
For example, if p = 2, then

. S 14242244 = 1111, 4)

)

and the sum converges in the 2-adic norm.
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1.1. p-adic numbers are naturally holographic
2eQy . Choosing a p-adic number
r z, 000 z € Q, amounts to choosing a
PU, U, U, U, path up through the tree:

e Where we leave the red
“trunk” determines |z|,.

1 e The rightmost p-adic digit is
non-zero, so a (p — 1)-fold
choice.

0 e Subsequent digits are p-fold
choices that steer us up the
tree.

i e Each node a on the way up to
\J z 1s a rational approximation
to 2, so that |2 — al, < |z,

e Note that p-adic integers Z, have |z|, < 1: a compact set!

e 2 € U, means |z|, = 1, so U, is like the unit circle.
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1.2. Plan of the rest of the talk

(Not exactly in order of presentation)
e Previous work: p-adic string [Freund-Olson "87], eternal symmetree [Harlow-Shenker-
Stanford-Susskind "11], p-adic field theory [Viadimirov, Zelenov, Missarov, ... c.a. “90].
e The tree is a quotient similar to SL(2, R)/U(1), so it’s like EAdS,.
e Field extensions of QQ, lead to trees analogous to EAdS,, ;.

e Natural classical dynamics on the tree allows to define correlators in a p-adic
field theory, similar to bottom-up AdS/CFT.

e 2pt, 3pt, 4pt functions exhibit interesting comparisons to the usual formulas for
real AdS,,, 1, but “ultra-metric” properties make the 4pt function much simpler.

e A p-adic analog of Euclidean black holes is based on a discrete identification of
the tree [Heydeman-Marcolli-Saberi-Stoica *16].

e Some possible future directions.



p-adic AdS/CFT 5 S. Gubser

1.3. The p-adic string

The (fully symmetrized) Veneziano amplitude has an obvious p-adic analog:
AL = / dz |21 = 2" = Too(—a(s))Too(—ar(t) Too(—x(ur))
R

5)
AP = || dzfzfy)1 = ol = T(-a(s) (o), (~a(w)

where all k7 = 2 (tachyons), s = —(k; + k»)* etc., a(s) = 1 + s/2, and we define

1 — o—1
(o) = 2lM'gue(0) COS% [(o) = 1_—1;0 forc € C. (6)

p-adic integration can be defined so that

/dz:l and /dz:\ﬂp/dz for £€€Q,5CQ,. ()
Z, ¢s s

Amazingly, [[,I',(z) = 1 where [ [, includes v = oo and also v = p for all primes.
So we get the “adelic” relation [Freund-Witten 87|

AW =1/ HAZ(74) (cf. |z] = 1/T1, ||, for rational z) . )
p
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2. p-adic AdS/CFT

A p-adic CFT should be defined by correlators, like

O(z)0(0) = £%2 (O(2)0(2)0(z)) = —29%0 (g,

|z|12)A’ B |Z122’232’31|ﬁ7

where z;; = z; — z;. The z; dependence is completely fixed by invariance under
p-adic linear fractional transformations:

_az+b
ez +d’

g € PGL(2,Q,) actsas  ¢(2) ad —bc#0.  (10)

The p-adic Veneziano amplitude comes from a 4pt function of vertex operators
Vi(2) = :e*X)in a free p-adic CFT: schematically,

Y~ | e (Vi (2) Vi (0)Vis ()W, (00) ) (11
The “bulk” should be a coset space like SL(2, R)/U(1) = EAdS, (cf. [Zabrodin 897)

PGL(2,7Z,) C PGL(2,Q,) is the maximal compact subset, and
PGL(2,Q,)/PGL(2,Z,) is the tree previously discussed! [Bruhat-Tits *72]
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2.1. Action in the bulk

In place of
1
Shulk = / >z /g lé(&p)? + V(¢)] (12)
EAdS,
it is natural to study
1
Stree — Z §(¢a — ¢b)2 + Z V(¢)a) (13)
(ab) a

where (ab) means that we are summing over adjacent vertices in the tree.

The linearized equation of motion involves only m> = V"(0):

2
(O +m;)p, =0 where O¢, = % (g — &) , (14
and the bulk-to-bulk propagator is
G (28) Ad(as ) 1
G(a,b) = 22—ty Adlab) where m: = — (15)
0= PTG 1G A

and d(a, b) is the number of steps from a to b on the tree.
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2.2. Two technical detours

1. We will often encounter local zeta functions

1
(oo(0) = 7 Tue(0/2) and  ()(0) = el (16)
so named because

CRiemann(O-) — H CP(O) and FU(O') — /1 v=o0ooo0rp. (17)

2. We allow the boundary to be an
n-dimensional vector space over Q,,.

e The simplest choice is the unramified
extension of Q, of degree n.

e We call this extension Q,, with ¢ = p".
e Pictured at right is the case n = 2.

e Norms |2], and depth direction z still
take values p* with w € Z.
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2.3. Three-point function—warmup

Recall the standard story of three-point functions in Euclidean AdS,, | ; / CFT,:

— log <exp { d"z ¢o(2)O(2) }> = extremum Spi|@] , (18)
R~ $(20,2)—¢0(Z)

e Differentiate (18) with respect to ¢y(21),
bo(2s), Po(Z3), set g5 = V"(0).

e Bulk-to-boundary propagators are simple
in terms of (.:

et Kz = @8 %
AdS, ! C(2A —n) (22 + (7 — 7)1~
so that d"z K(x7 5) =1
RTL

7
Q
/N
N
—_
S—
®
/~
&y
[\
—
®
A~
N
w
—
~—
|

= —93/ d" \/EK(QZ Zl)K(x; 52)K(37; 53)
AdS, 1

_ C((’)O(%)(’) O(oo) = —g COO(A)?)COO(gA — n)
| 2122 | Zag| 2| Z13] 2 000 P20 (2A —n)3
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2.4. Three-point function

The “traditional” expression for C((goé)@ is equivalent but involves 7 explicitly:
C( ) — _g 7T_nFEuler(A/2)3FEuler(3A/2 I n/2)
ool ’ 2FEuler(A - TL/Q) .

(19)

The p-adic version of the three-point
calculation factorizes conveniently into
external legs times an internal summation:

(O00) ——gngKx Z;)

r i=1

The final result: (absence of 7 factors is now inevitable)

Co G(APG(3A = n)
O(2)0(%)0(7)) = 22—, Clho = —gs =2
OR)OEOE) = == == 000 = 95 DA )

21
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2.5. Three-point function—details

We require bulk-to-boundary and un-normalized bulk-to-bulk propagators:

K( —») CP<2A) ‘Zo‘p

T, Z) =

G028 —n) (sup{|zol,, 12— 2, D)

G(a,b) = p 29 (22)

K solves (O + m2) K = 0 with

d'z K(x;2) =1.
Qq

The sum over position of & supplies an
overall factor:

> " Gle, b)G(b, z)?

—_
_|_
[
)
|
N
)
T
-
EI
E
~
o
1
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3. The four-point function

The dominant contribution to the four-point function in the limit
‘512’ ‘534’ < |213| |524| takes the form

[To)) = SRR CHA — gl Zl/ |zl
=1 | e g4<(2A_”>4C(4A> | 2153|7824 22 (23)

|- =] or ||, ¢ = (o or ¢, log =log, or log, .

For v = 00, this is a restatement of results of [D'Hoker et al "99]; full expression is
available and is a complicated function of two independent cross-ratios,

_ |Zf|Z| - 2l
—_ - u - —

= — —— (24)
Y213|YZ24| Y213|YZ24|

For v = p, the full expression (still just the 4pt contact diagram) for u < 1 is

4 2
> _ 1 (p(24) CP(QA)4CP(4A_H)/Cp(zA—n)4
<HO<Z@)> B [Cp(4A) 1ogpu N (Cp(4A) T 1) + 3] 94 | 21320422
=1

(25)

— Where did log,, u come from, and why is there no u dependence?
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3.1. Ultrametricity

2|, (and |Z],) are “ultra-metric:” |z + y| < sup{|z|, |y|}.

We want this small | Theorem: u < 1 implies u = 1.

Lemma (tall isosceles): If  +y + 2z = 0, then |z| = |y| > |2
up to relabeling of x, y, and z.

b

Proof of Lemma:
Relabel so that |z| < |z| and |z| < |y|.
Then || = |y + z[ < sup{|y|, [2[} = [y]. Likewise |y| < |z|. So[z| = [y

Proof of Theorem:
Relabel so that |215| < |234| and |z13] < |294]. Then |z15| < |204|.
219 + 294 — 214 = 0, 80 | z14| = | 224| by the Lemma.

Case I: |z34| > |z13|. Then |z14| = |234] by the Lemma.
u = |z12234/|213224] = [212]/|213] <1, 80 [203] = |21

Case II: | 234 < |213]. Then |213] = |214] = |204] > | 212

Case III: |z34| = |2z13]. Then |z15| = u|213] < |213

tall 1sosceles

, QED.

by the Lemma.
, SO again

>

213

293

, SO again | 2o =

213‘-

Put it all together: @ = |z14293]/|213204] = 1, QED.
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3.2. A distance formula

If u <1, then —log,u = d(cy, ¢y) is the number of steps between ¢; and ¢5.
The situation closest to normal intuition is
Q |512|7’534’ < |513|7‘514’>|524|7‘523’-

Then ‘213‘ = ’514’ = ‘524‘ = ’523’ (Lemma).

But the weaker result & = 1 holds even if
| 254 is big, provided only u < 1.

(O000) = —9421_[[( T; Z;)

There are d(cy, ¢o) equlvalent ways
to locate the b-x branch.

Hence we get a factor of — log, u in (OO0Q).



p-adic AdS/CFT 15

S. Gubser

3.3. Form of the four-point function

Non-logarithmic terms come from “subway
diagrams” of a slightly different topology:

Despite appearances, we’re never including
exchange diagrams!

Only the g,¢" interaction is included in our
published calculations, but exchange
diagrams don’t drastically change the story:
same log, u appears.

Logarithmic behavior suggests a small anomalous dimension for O

e Suppose A2 = 2Ap + 0 with ¢ small.
® 0(51)0(52) ~ ’512’_502(2_)1) if |512| 1s small.

- > o - - Z12734)° —§logu
¢ <H?:1 O(ZZ)> ~ |212Z34|5<O2(Z1)02(Z3)> ~ ijiﬂaa S

|Z13704]22

e Similar mechanism is responsible for log u behavior in classic AdS/CFT.

What about the field theory on the boundary, then?
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3.4. Excursion into field theory
A Fourier transform on Q, exists which exhibits most standard properties:
fla)= | d"kx(kz)f(k) X(§) = e (26)

Qq

Details of y are slightly tricky. Let’s be satisfied with x: Q, — S I C C such that
X (& + &) = x(&1)x(&): an “additive character.”

1
k|s +r

Suppose  Gys(k) = (p(k)p(—k)) = for real r, s but with k£ € Q,.

Then we have UV divergences that work similarly to QFT on R":

Adry
ISZ / ~ \"? diverges as A — oo if n > s
e+

where [ means we restrict |¢| < A.

Can we get a p-adic Wilson-Fisher fixed point starting from ¢* theory?

S = /d”k —p(—k)(|k] +7) (k)+/ d”x% (z)*. (27)
Q, -
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3.5. The funny thing about effective field theory

Integrating out a momentum shell generates perfectly local interactions with no
derivatives [Lerner-Missarov "89]. For example: If ]k\ < 1, then

km Ig(k:)E/ dM@M%(z?ﬂ@—m:[g(oy (28)
U

softUb ., (1+r)
1, S

={l € Q,: |f| =1} is the A = 1 momentum shell.

e To demonstrate = we simply set gg = (3 — k. Given .
k| < 1, we have | (3] = 1iff |(5] = 1, by the Lemma.

o (3 — l3isa bijection on U, and d"l3 = d" ls.
Similar arguments apply for any graph.

S = [ @hSoRIRFOH) + [ e Vaalo).

e Operators ¢()™ mix among themselves but not with ¢9*¢ like in real case.

e I suspect this is closely related to simplicity of 4pt function: OPE of O(x)O(0)
is probably very sparse, with no descendants.
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4. Loose ends and future directions

4.1. A BTZ-like construction A

In [Heydeman-Marcolli-Saberi-Stoica *16] a p—adic
version of Euclidean BTZ was suggested.

e Inspiration is the representation of a / /’ a
torus as C~ modulo the map z — gz -
where ¢ = ™7, & 1

e Similarly identify Q,; modulo z — qz
where |¢| > 1. r

" o Identifying the bulk by

q 0

gives a cycle of length

Here p = 3
log, |ql.

and log, |q| = 6.
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4.2. A connection to inflation

Eternal symmetree [Harlow-Shenker-Stanford-Susskind "11]:

e An idealization of eternal inflation.

e A given causal region can nucleate new de Sitter vacua which fall out of causal

Q,

contact and split again.

e A statistical model is defined on the tree for
Q- where each node is a causal patch.

e The forward-time boundary is (Q,, which is
more descriptive of the late-time
multiverse than the forward-time boundary
of de Sitter.

time

e 2-adic symmetry is realized on statistical correlators of observables at this forward-
time boundary.
Single-cell probabilities evolve by P,,(child) = G, P, (parent)
where m, n run over colors representing different d.5 vacua.

N -point correlators comes from joint probabilities P, where n; specifies color

of cell a;, eventually all taken to the far future.

1...-MN
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4.3. Conclusions and future directions

e A holographic direction is natural in describing the p-adic numbers: z; is the
p-adic accuracy of a truncated p-nary expansion of z.

e A simple classical action on the tree whose boundary is Q, gives rise to /N -point
functions closely analogous to standard results in AdS/CFT.

— Normalizations are naturally expressed in terms of local zeta functions (,(A).

e Why are the p-adic results so close to classic AdS/CFT for N = 3and N = 4,
but not quite the same? (/N = 2 suffers some IR regulator issues.)

e What about fluctuating geometry in the tree graph?
e What about Lorentzian signature?
e Ultra-metricity leads to some interesting simplifications in QFT.
— Momentum shell integration, counter-terms, and OPE all seem simpler.

— Form of holographic 4pt function hints at similar simplifications.

e Can we give a more symmetry-based presentation of p-adic CFT (cf. [Melzer *89)),
and/or find explicit AAS/CFT dual pairs?
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