p-adic AdS/CFT

Steve Gubser Princeton

Based on 1605.01061 with J. Knaute, S. Parikh, A. Samberg, and P. Witaszczyk

Strings 2016, Beijing

Introduction

p-adic numbers are a completion of the rationals with respect to a funny norm:

$$
\left| p^v \frac{a}{b} \right|_p = p^{-v} \qquad \text{assuming} \qquad p \nmid a \quad \text{and} \quad p \nmid b \,. \tag{1}
$$

The key intuition is that the prime p is small but not zero:

$$
|0|_p = 0
$$
 (by flat), $|a|_p = 1$ for $a = 1, 2, 3, ..., p - 1$
\n $|p|_p = \frac{1}{p}$, $|p^2| = \frac{1}{p^2}$, $|p^3| = \frac{1}{p^3}$... (2)

A general non-zero p -adic number can be written as a formal series

$$
z = p^v \sum_{m=0}^{\infty} a_m p^m, \quad a_0 \neq 0, \quad v \in \mathbb{Z} \,.
$$
 (3)

For example, if $p = 2$, then

$$
-1 = \frac{1}{1-2} = 1 + 2 + 2^2 + 2^3 + \dots = \dots 1111_2
$$
 (4)

and the sum converges in the 2-adic norm.

1.1. p-adic numbers are naturally holographic

Choosing a p -adic number $z \in \mathbb{Q}_p$ amounts to choosing a path up through the tree:

- Where we leave the red "trunk" determines $|z|_p$.
- The rightmost p -adic digit is non-zero, so a $(p-1)$ -fold choice.
- Subsequent digits are p -fold choices that steer us up the tree.
- Each node α on the way up to z is a rational approximation to z, so that $|z - a|_p \leq |z_0|_p$.

• Note that *p*-adic integers \mathbb{Z}_p have $|z|_p \leq 1$: a compact set!

• $z \in \mathbb{U}_p$ means $|z|_p = 1$, so \mathbb{U}_p is like the unit circle.

1.2. Plan of the rest of the talk

(Not exactly in order of presentation)

- Previous work: *p*-adic string [Freund-Olson '87], eternal symmetree [Harlow-Shenker-Stanford-Susskind '11], p-adic field theory [Vladimirov, Zelenov, Missarov, ... c.a. '90].
- The tree is a quotient similar to $SL(2, \mathbb{R})/U(1)$, so it's like $EAdS_2$.
- Field extensions of \mathbb{Q}_p lead to trees analogous to EAdS_{n+1} .
- Natural classical dynamics on the tree allows to define correlators in a p -adic field theory, similar to bottom-up AdS/CFT.
- 2pt, 3pt, 4pt functions exhibit interesting comparisons to the usual formulas for real AdS_{n+1} , but "ultra-metric" properties make the 4pt function much simpler.
- A p-adic analog of Euclidean black holes is based on a discrete identification of the tree [Heydeman-Marcolli-Saberi-Stoica '16].
- Some possible future directions.

1.3. The p-adic string

The (fully symmetrized) Veneziano amplitude has an obvious p -adic analog:

$$
A_{\infty}^{(4)} = \int_{\mathbb{R}} dz \, |z|^{k_1 \cdot k_2} |1 - z|^{k_1 \cdot k_3} = \Gamma_{\infty}(-\alpha(s)) \Gamma_{\infty}(-\alpha(t)) \Gamma_{\infty}(-\alpha(u))
$$

$$
A_p^{(4)} = \int_{\mathbb{Q}_p} dz \, |z|_p^{k_1 \cdot k_2} |1 - z|_p^{k_1 \cdot k_3} = \Gamma_p(-\alpha(s)) \Gamma_p(-\alpha(t)) \Gamma_p(-\alpha(u))
$$
 (5)

where all $k_i^2 = 2$ (tachyons), $s = -(k_1 + k_2)^2$ etc., $\alpha(s) = 1 + s/2$, and we define

$$
\Gamma_{\infty}(\sigma) \equiv 2\Gamma_{\text{Euler}}(\sigma)\cos\frac{\pi\sigma}{2} \qquad \qquad \Gamma_p(\sigma) \equiv \frac{1-p^{\sigma-1}}{1-p^{-\sigma}} \qquad \text{for } \sigma \in \mathbb{C}. \tag{6}
$$

p-adic integration can be defined so that

$$
\int_{\mathbb{Z}_p} dz = 1 \quad \text{and} \quad \int_{\xi S} dz = |\xi|_p \int_S dz \quad \text{for} \quad \xi \in \mathbb{Q}_p, S \subset \mathbb{Q}_p. \quad (7)
$$

Amazingly, $\prod_v \Gamma_v(z) = 1$ where \prod_v includes $v = \infty$ and also $v = p$ for all primes. So we get the "adelic" relation [Freund-Witten '87]

$$
A_{\infty}^{(4)} = 1/\prod_{p} A_{p}^{(4)} \qquad \qquad (\text{cf.} \quad |z|_{\infty} = 1/\prod_{p} |z|_{p} \text{ for rational } z). \qquad (8)
$$

2. p-adic AdS/CFT

A p-adic CFT should be defined by correlators, like

$$
\langle \mathcal{O}(z)\mathcal{O}(0)\rangle = \frac{C_{\mathcal{O}\mathcal{O}}}{|z|_p^{2\Delta}}, \qquad \langle \mathcal{O}(z_1)\mathcal{O}(z_2)\mathcal{O}(z_3)\rangle = \frac{C_{\mathcal{O}\mathcal{O}\mathcal{O}}}{|z_{12}z_{23}z_{31}|_p^{\Delta}}, \quad (9)
$$

where $z_{ij} \equiv z_i - z_j$. The z_i dependence is completely fixed by invariance under p-adic linear fractional transformations:

$$
g \in \text{PGL}(2, \mathbb{Q}_p)
$$
 acts as $g(z) = \frac{az+b}{cz+d}$, $ad - bc \neq 0$. (10)

The *p*-adic Veneziano amplitude comes from a 4pt function of vertex operators $\mathcal{V}_k(z) = :e^{ik \cdot X(z)}$: in a free p-adic CFT: schematically,

$$
A_p^{(4)} \sim \int_{\mathbb{Q}_p} dz \left\langle \mathcal{V}_{k_1}(z) \mathcal{V}_{k_2}(0) \mathcal{V}_{k_3}(1) \mathcal{V}_{k_4}(\infty) \right\rangle.
$$
 (11)

The "bulk" should be a coset space like $SL(2, \mathbb{R})/U(1) = EAdS_2$ (cf. [Zabrodin '89]) $PGL(2, \mathbb{Z}_p) \subset PGL(2, \mathbb{Q}_p)$ is the maximal compact subset, and $PGL(2, \mathbb{Q}_p)/PGL(2, \mathbb{Z}_p)$ is the tree previously discussed! [Bruhat-Tits '72]

2.1. Action in the bulk

In place of

$$
S_{\text{bulk}} = \int_{\text{EAdS}_2} d^2 z \sqrt{g} \left[\frac{1}{2} (\partial \phi)^2 + V(\phi) \right]
$$
 (12)

it is natural to study

$$
S_{\text{tree}} = \sum_{\langle ab \rangle} \frac{1}{2} (\phi_a - \phi_b)^2 + \sum_a V(\phi_a)
$$
 (13)

where $\langle ab \rangle$ means that we are summing over adjacent vertices in the tree. The *linearized* equation of motion involves only $m_p^2 = V''(0)$:

$$
(\Box + m_p^2)\phi_a = 0 \qquad \text{where} \qquad \Box \phi_a = \sum_{\genfrac{\langle ab \rangle}{ab} \text{fixed}} (\phi_a - \phi_b), \tag{14}
$$

and the bulk-to-bulk propagator is

$$
G(a,b) = \frac{\zeta_p(2\Delta)}{p^{\Delta}} p^{-\Delta d(a,b)} \quad \text{where} \quad m_p^2 = -\frac{1}{\zeta_p(\Delta - 1)\zeta_p(-\Delta)} \quad (15)
$$

and $d(a, b)$ is the number of steps from a to b on the tree.

2.2. Two technical detours

1. We will often encounter local zeta functions

 $\zeta_{\infty}(\sigma) \equiv \pi^{-\sigma/2} \Gamma_{\text{Euler}}(\sigma/2) \qquad \text{and} \qquad \zeta_{p}(\sigma) \equiv$ 1 $1-p^{-\sigma}$ (16)

so named because

$$
\zeta_{\text{Riemann}}(\sigma) = \prod_{p} \zeta_{p}(\sigma) \quad \text{and} \quad \Gamma_{v}(\sigma) = \frac{\zeta_{v}(\sigma)}{\zeta_{v}(1-\sigma)}, \quad v = \infty \text{ or } p. \tag{17}
$$

- 2. We allow the boundary to be an *n*-dimensional vector space over \mathbb{Q}_p .
	- The simplest choice is the unramified extension of \mathbb{Q}_p of degree *n*.
	- We call this extension \mathbb{Q}_q , with $q = p^n$.
	- Pictured at right is the case $n = 2$.
	- Norms $|\vec{z}|_q$ and depth direction z_0 still take values p^{ω} with $\omega \in \mathbb{Z}$.

2.3. Three-point function—warmup

Recall the standard story of three-point functions in Euclidean AdS_{n+1}/CFT_n :

$$
-\log\left\langle \exp\left\{ \int_{\mathbb{R}^n} d^n z \, \phi_0(\vec{z}) \mathcal{O}(\vec{z}) \right\} \right\rangle = \operatorname*{extremum}_{\phi(z_0, \vec{z}) \to \phi_0(\vec{z})} S_{\text{bulk}}[\phi] \,, \tag{18}
$$

- (\vec{x}, \vec{x}_0) *2 z* \vec{z}_3 **K** *K K g³* \vec{z}_1 $\overline{\mathbf{R}}^n$ AdS_{n+1} Integrate \boldsymbol{x} over all of *x* | • Differentiate (18) with respect to $\phi_0(\vec{z}_1)$, $\phi_0(\vec{z}_2), \phi_0(\vec{z}_3)$, set $g_3 = V'''(0)$. • Bulk-to-boundary propagators are simple in terms of ζ_{∞} : $K(x; \vec{z}) = \frac{\zeta_{\infty}(2\Delta)}{\zeta_{\infty}(2\Delta)}$ $\zeta_{\infty}(2\Delta - n)$ z_0^{Δ} 0 $(z_0^2 + (\vec{z} - \vec{x})^2)^{\Delta}$ so that $\overline{}$ \mathbb{R}^n $d^n z K(x; \vec{z}) = 1$ $\langle {\cal O}(\vec z_1){\cal O}(\vec z_2){\cal O}(\vec z_3)\rangle = -g_3$ Z AdS_{n+1} $d^{n+1}x$ √ $\overline{g}\,K(x;\vec{z_{1}})K(x;\vec{z_{2}})K(x;\vec{z_{3}})$ = $C^{\infty}_{\mathcal{O}\mathcal{O}}$ OOO $\frac{C_{\mathcal{O}\mathcal{O}\mathcal{O}}}{|\vec{z}_{12}|^{\Delta}|\vec{z}_{23}|^{\Delta}|\vec{z}_{13}|^{\Delta}}, \qquad C_{\mathcal{O}\mathcal{O}\mathcal{O}}^{(\infty)} = -g_3$ $\zeta_{\infty}(\Delta)^3 \zeta_{\infty}(3\Delta - n)$ $2\zeta_\infty(2\Delta-n)^3$
	-

z \Rightarrow

2.4. Three-point function

b c c

x

¹ *z*

 \Rightarrow

2 \bullet \overrightarrow{z}

 \Rightarrow 3

The "traditional" expression for $C_{\mathcal{O} \mathcal{O} \mathcal{O}}^{(\infty)}$ is equivalent but involves π explicitly:

$$
C_{\mathcal{O}\mathcal{O}\mathcal{O}}^{(\infty)} = -g_3 \pi^{-n} \frac{\Gamma_{\text{Euler}}(\Delta/2)^3 \Gamma_{\text{Euler}}(3\Delta/2 - n/2)}{2\Gamma_{\text{Euler}}(\Delta - n/2)}.
$$
 (19)

The *p*-adic version of the three-point calculation factorizes conveniently into external legs times an internal summation:

$$
\langle \mathcal{O}\mathcal{O}\mathcal{O}\rangle = -g_3 \sum_{x} \prod_{i=1}^{3} K(x; \vec{z}_i)
$$

$$
= -g_3 \left[\prod_{i=1}^{3} K(c; \vec{z}_i)\right] \times \qquad (20)
$$

$$
\sum_{x} \hat{G}(c, b)\hat{G}(b, x)^3
$$

The final result: (absence of π factors is now inevitable)

$$
\langle \mathcal{O}(\vec{z}_1) \mathcal{O}(\vec{z}_2) \mathcal{O}(\vec{z}_3) \rangle = \frac{C_{\mathcal{O}\mathcal{O}\mathcal{O}}^{(p)}}{|\vec{z}_1 \vec{z}_2 \vec{z}_3 \vec{z}_1|^\Delta}, \qquad C_{\mathcal{O}\mathcal{O}\mathcal{O}}^{(p)} = -g_3 \frac{\zeta_p(\Delta)^3 \zeta_p (3\Delta - n)}{\zeta_p (2\Delta - n)^3}
$$
(21)

2.5. Three-point function—details

We require bulk-to-boundary and un-normalized bulk-to-bulk propagators:

$$
K(x; \vec{z}) = \frac{\zeta_p(2\Delta)}{\zeta_p(2\Delta - n)} \frac{|z_0|_p^{\Delta}}{(\sup\{|z_0|_p, |\vec{z} - \vec{x}|_q\})^{\Delta}}, \quad \hat{G}(a, b) \equiv p^{-\Delta d(a, b)} \quad (22)
$$

\n
$$
K \text{ solves } (\Box + m_p^2)K = 0 \text{ with}
$$

\n
$$
\int_{\mathbb{Q}_q} d^n z K(x; \vec{z}) = 1.
$$

\nThe sum over position of x supplies an overall factor:
\n
$$
\sum_{m=1}^{\infty} \hat{G}(c, b) \hat{G}(b, x)^3
$$

\n
$$
= 3 \sum_{m=1}^{\infty} p^{-\Delta m} \left[1 + \sum_{\ell=1}^{\infty} (q - 1) q^{\ell-1} (p^{-\Delta \ell})^3\right]
$$

\n
$$
+ \left[1 + \sum_{\ell=1}^{\infty} (q - 2) q^{\ell-1} (p^{-\Delta \ell})^3\right] = \frac{\zeta_p(\Delta)^3 \zeta_p(3\Delta - n)}{\zeta_p(2\Delta)^3},
$$

3. The four-point function

The dominant contribution to the four-point function in the limit $|\vec{z}_{12}||\vec{z}_{34}| \ll |\vec{z}_{13}||\vec{z}_{24}|$ takes the form

$$
\left\langle \prod_{i=1}^{4} \mathcal{O}(\vec{z}_{i}) \right\rangle_{\text{leading}} = g_{4} \frac{\zeta(2\Delta)^{4} \zeta(4\Delta - n)}{\zeta(2\Delta - n)^{4} \zeta(4\Delta)} \frac{\log(|\vec{z}_{12}||\vec{z}_{34}|/|\vec{z}_{13}||\vec{z}_{24}|)}{|\vec{z}_{13}|^{2\Delta} |\vec{z}_{24}|^{2\Delta}} \qquad (23)
$$
\n
$$
|\cdot| = |\cdot|_{\infty} \text{ or } |\cdot|_{q}, \qquad \zeta = \zeta_{\infty} \text{ or } \zeta_{p}, \qquad \log = \log_{e} \text{ or } \log_{p}.
$$

For $v = \infty$, this is a restatement of results of [D'Hoker et al '99]; full expression is available and is a complicated function of two independent cross-ratios,

$$
u \equiv \frac{|\vec{z}_{12}||\vec{z}_{34}|}{|\vec{z}_{13}||\vec{z}_{24}|} \qquad \tilde{u} \equiv \frac{|\vec{z}_{14}||\vec{z}_{23}|}{|\vec{z}_{13}||\vec{z}_{24}|}. \qquad (24)
$$

For $v = p$, the *full expression* (still just the 4pt contact diagram) for $u \le 1$ is

$$
\left\langle \prod_{i=1}^{4} \mathcal{O}(\vec{z}_i) \right\rangle = \left[\frac{1}{\zeta_p(4\Delta)} \log_p u - \left(\frac{\zeta_p(2\Delta)}{\zeta_p(4\Delta)} + 1 \right)^2 + 3 \right] g_4 \frac{\zeta_p(2\Delta)^4 \zeta_p(4\Delta - n) / \zeta_p(2\Delta - n)^4}{|\vec{z}_{13}\vec{z}_{24}|^{2\Delta}} \tag{25}
$$

 \rightarrow Where did $\log_p u$ come from, and why is there no \tilde{u} dependence?

3.1. Ultrametricity

 $|z|_p$ (and $|\vec{z}|_q$) are "ultra-metric:" $|x + y| \leq \sup\{|x|, |y|\}$.

We want this small *Theorem:* $u < 1$ implies $\tilde{u} = 1$.

Lemma (tall isosceles): If $x + y + z = 0$, then $|x| = |y| \ge |z|$, up to relabeling of x, y , and z .

Proof of Lemma:

Relabel so that $|z| \le |x|$ and $|z| \le |y|$. Then $|x| = |y + z| \le \sup\{|y|, |z|\} = |y|$. Likewise $|y| \le |x|$. So $|x| = |y|$, QED.

Proof of Theorem:

Relabel so that $|z_{12}| \le |z_{34}|$ and $|z_{13}| \le |z_{24}|$. Then $|z_{12}| < |z_{24}|$. $z_{12} + z_{24} - z_{14} = 0$, so $|z_{14}| = |z_{24}|$ by the Lemma. *Case I:* $|z_{34}| > |z_{13}|$. Then $|z_{14}| = |z_{34}|$ by the Lemma. $u = |z_{12}z_{34}|/|z_{13}z_{24}| = |z_{12}|/|z_{13}| < 1$, so $|z_{23}| = |z_{13}|$ by the Lemma. *Case II:* $|z_{34}| < |z_{13}|$. Then $|z_{13}| = |z_{14}| = |z_{24}| > |z_{12}|$, so again $|z_{23}| = |z_{13}|$. *Case III:* $|z_{34}| = |z_{13}|$. Then $|z_{12}| = u|z_{13}| < |z_{13}|$, so again $|z_{23}| = |z_{13}|$. Put it all together: $\tilde{u} = |z_{14}z_{23}|/|z_{13}z_{24}| = 1$, QED.

tall isosceles

3.2. A distance formula

If $u < 1$, then $-\log_p u = d(c_1, c_2)$ is the number of steps between c_1 and c_2 .

 $\langle \mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\rangle = -g_4 \sum \prod K(x;\vec{z}_i)$ \boldsymbol{x} 4 $i=1$

There are $d(c_1, c_2)$ equivalent ways to locate the $b-x$ branch.

Hence we get a factor of $-\log_p u$ in $\langle OOOO \rangle$.

The situation closest to normal intuition is $|\vec{z}_{12}|, |\vec{z}_{34}| < |\vec{z}_{13}|, |\vec{z}_{14}|, |\vec{z}_{24}|, |\vec{z}_{23}|.$

Then $|\vec{z}_{13}| = |\vec{z}_{14}| = |\vec{z}_{24}| = |\vec{z}_{23}|$ (Lemma).

But the weaker result $\tilde{u} = 1$ holds even if $|\vec{z}_{34}|$ is *big*, provided only $u < 1$.

3.3. Form of the four-point function

Non-logarithmic terms come from "subway diagrams" of a slightly different topology:

Despite appearances, we're never including exchange diagrams!

Only the $g_4\phi^4$ interaction is included in our published calculations, but exchange diagrams don't drastically change the story: same $\log_p u$ appears.

Logarithmic behavior suggests a small anomalous dimension for \mathcal{O}^2 :

- Suppose $\Delta_{\mathcal{O}^2} = 2\Delta_{\mathcal{O}} + \delta$ with δ small.
- $\mathcal{O}(\vec{z}_1)\mathcal{O}(\vec{z}_2) \sim |\vec{z}_{12}|^{-\delta}\mathcal{O}^2(\vec{z}_1)$ if $|\vec{z}_{12}|$ is small.
- $\bullet\left\langle \prod_{i=1}^4 {\cal O}(\vec z_i)\right\rangle\sim |\vec z_{12}\vec z_{34}|^\delta \langle {\cal O}^2(\vec z_1) {\cal O}^2(\vec z_3)\rangle\sim \frac{|\vec z_{12}\vec z_{34}|^\delta}{|\vec z_{13}|^{4\Delta+2}}$ $\frac{|\vec{z_{12}}\vec{z_{34}}|^{\delta}}{|\vec{z_{13}}|^{4\Delta+2\delta}} \approx \frac{1-\delta\log u}{|\vec{z_{13}}\vec{z_{24}}|^{2\Delta}}$ $rac{1-\sigma\log u}{|\vec{z}_{13}\vec{z}_{24}|^{2\Delta}}$.
- Similar mechanism is responsible for $log u$ behavior in classic AdS/CFT.

What about the field theory on the boundary, then?

3.4. Excursion into field theory

A Fourier transform on \mathbb{Q}_q exists which exhibits most standard properties:

$$
f(x) = \int_{\mathbb{Q}_q} d^n k \,\chi(kx)\hat{f}(k) \qquad \qquad \chi(\xi) = e^{2\pi i[\xi]}.
$$
 (26)

Details of χ are slightly tricky. Let's be satisfied with $\chi: \mathbb{Q}_q \to S^1 \subset \mathbb{C}$ such that $\chi(\xi_1 + \xi_2) = \chi(\xi_1)\chi(\xi_2)$: an "additive character."

Suppose
$$
G_{\phi\phi}(k) = \langle \phi(k)\phi(-k) \rangle = \frac{1}{|k|^s + r}
$$
 for real *r*, *s* but with $k \in \mathbb{Q}_q$.

Then we have UV divergences that work similarly to QFT on \mathbb{R}^n :

 ι \bigcap $\qquad \int$ ^{Λ} $\overline{\mathbb{Q}}_q$ $d^n\ell$ $|\ell|^s + r$ $\sim \Lambda^{n-s}$ diverges as $\Lambda \to \infty$ if $n > s$

where \int^{Λ} means we restrict $|\ell| < \Lambda$.

Can we get a *p*-adic Wilson-Fisher fixed point starting from ϕ^4 theory?

$$
S = \int_{\mathbb{Q}_q} d^n k \frac{1}{2} \phi(-k) (|k|^s + r) \phi(k) + \int_{\mathbb{Q}_q} d^n x \frac{\lambda}{4!} \phi(x)^4. \tag{27}
$$

l

3.5. The funny thing about effective field theory

Integrating out a momentum shell generates perfectly local interactions with no derivatives [Lerner-Missarov '89]. For example: If $|k| < 1$, then

$$
\mathbf{E} \left(\mathbf{I}_2 \right) \qquad I_2(k) \equiv \int_{\mathbb{U}_q} \frac{d^n \ell_1 d^n \ell_2 d^n \ell_3}{(1+r)^3} \delta(\sum_{i=1}^3 \ell_i - k) \doteq I_2(0) \,. \tag{28}
$$

 $\mathbb{U}_q = \{ \ell \in \mathbb{Q}_q : |\ell| = 1 \}$ is the $\Lambda = 1$ momentum shell.

- To demonstrate $\dot{=}$ we simply set $\tilde{\ell}_3 = \ell_3 k$. Given $|k| < 1$, we have $|\ell_3| = 1$ iff $|\tilde{\ell}_3| = 1$, by the Lemma.
- $\ell_3 \to \tilde{\ell}_3$ is a bijection on \mathbb{U}_q , and $d^n \ell_3 = d^n \tilde{\ell}_3$. Similar arguments apply for any graph.

$$
\bullet \ S_{\text{eff}} = \int d^nk \, \frac{1}{2} \phi(-k) |k|^s \phi(k) + \int d^nx \, V_{\text{eff}}(\phi) \, .
$$

- Operators $\phi(x)^m$ mix among themselves but not with $\phi\partial^\ell\phi$ like in real case.
- I suspect this is closely related to simplicity of 4pt function: OPE of $\mathcal{O}(x)\mathcal{O}(0)$ is probably very sparse, with no descendants.

4. Loose ends and future directions

4.1. A BTZ-like construction

In [Heydeman-Marcolli-Saberi-Stoica '16] a p-adic version of Euclidean BTZ was suggested.

- Inspiration is the representation of a torus as \mathbb{C}^{\times} modulo the map $z \to qz$ where $q = e^{2\pi i \tau}$.
- Similarly identify \mathbb{Q}_p^{\times} modulo $z \to qz$ where $|q| > 1$.

Here $p = 3$

and $\log_p|q| = 6$.

• Identifying the bulk by $\sqrt{ }$ $q₀$ 0 1 \setminus \in PGL $(2, \mathbb{Q}_p)$ gives a cycle of length $\log_p|q|.$

1

 Γ

q

4.2. A connection to inflation

Eternal symmetree [Harlow-Shenker-Stanford-Susskind '11]:

- An idealization of eternal inflation.
- A given causal region can nucleate new de Sitter vacua which fall out of causal contact and split again.
- A statistical model is defined on the tree for \mathbb{Q}_2 where each node is a causal patch.
- The forward-time boundary is \mathbb{Q}_2 , which is more descriptive of the late-time multiverse than the forward-time boundary of de Sitter.

• 2-adic symmetry is realized on statistical correlators of observables at this forwardtime boundary.

Single-cell probabilities evolve by $P_m(\text{child}) = G_{mn}P_n(\text{parent})$ where m , n run over colors representing different dS vacua.

N-point correlators comes from joint probabilities $P_{n_1...n_N}$ where n_i specifies color of cell a_i , eventually all taken to the far future.

4.3. Conclusions and future directions

- A holographic direction is natural in describing the *p*-adic numbers: z_0 is the p-adic accuracy of a truncated p-nary expansion of z.
- A simple classical action on the tree whose boundary is \mathbb{Q}_q gives rise to N-point functions closely analogous to standard results in AdS/CFT.
	- Normalizations are naturally expressed in terms of local zeta functions $\zeta_v(\Delta)$.
- Why are the *p*-adic results so close to classic AdS/CFT for $N = 3$ and $N = 4$, but not quite the same? ($N = 2$ suffers some IR regulator issues.)
- What about fluctuating geometry in the tree graph?
- What about Lorentzian signature?
- Ultra-metricity leads to some interesting simplifications in QFT.
	- Momentum shell integration, counter-terms, and OPE all seem simpler.
	- Form of holographic 4pt function hints at similar simplifications.
- Can we give a more symmetry-based presentation of p -adic CFT (cf. [Melzer '89]), and/or find explicit AdS/CFT dual pairs?