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1. Introduction
p-adic numbers are a completion of the rationals with respect to a funny norm:∣∣∣∣pvab

∣∣∣∣
p

= p−v assuming p - a and p - b . (1)

The key intuition is that the prime p is small but not zero:

|0|p = 0 (by fiat) , |a|p = 1 for a = 1, 2, 3, . . . , p− 1

|p|p =
1

p
, |p2| = 1

p2
, |p3| = 1

p3
. . .

(2)

A general non-zero p-adic number can be written as a formal series

z = pv
∞∑
m=0

amp
m , a0 6= 0 , v ∈ Z . (3)

For example, if p = 2, then

−1 =
1

1− 2
= 1 + 2 + 22 + 23 + . . . = . . . 11112 (4)

and the sum converges in the 2-adic norm.
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1.1. p-adic numbers are naturally holographic
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Choosing a p-adic number
z ∈ Qp amounts to choosing a
path up through the tree:

• Where we leave the red
“trunk” determines |z|p.
• The rightmost p-adic digit is

non-zero, so a (p− 1)-fold
choice.

• Subsequent digits are p-fold
choices that steer us up the
tree.

• Each node a on the way up to
z is a rational approximation
to z, so that |z − a|p ≤ |z0|p.

• Note that p-adic integers Zp have |z|p ≤ 1: a compact set!

• z ∈ Up means |z|p = 1, so Up is like the unit circle.
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1.2. Plan of the rest of the talk

(Not exactly in order of presentation)

• Previous work: p-adic string [Freund-Olson ’87], eternal symmetree [Harlow-Shenker-

Stanford-Susskind ’11], p-adic field theory [Vladimirov, Zelenov, Missarov, ... c.a. ’90].

• The tree is a quotient similar to SL(2,R)/U(1), so it’s like EAdS2.

• Field extensions of Qp lead to trees analogous to EAdSn+1.

• Natural classical dynamics on the tree allows to define correlators in a p-adic
field theory, similar to bottom-up AdS/CFT.

• 2pt, 3pt, 4pt functions exhibit interesting comparisons to the usual formulas for
real AdSn+1, but “ultra-metric” properties make the 4pt function much simpler.

• A p-adic analog of Euclidean black holes is based on a discrete identification of
the tree [Heydeman-Marcolli-Saberi-Stoica ’16].

• Some possible future directions.
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1.3. The p-adic string

The (fully symmetrized) Veneziano amplitude has an obvious p-adic analog:

A(4)
∞ =

∫
R
dz |z|k1·k2|1− z|k1·k3 = Γ∞(−α(s))Γ∞(−α(t))Γ∞(−α(u))

A(4)
p =

∫
Qp

dz |z|k1·k2
p |1− z|k1·k3

p = Γp(−α(s))Γp(−α(t))Γp(−α(u))
(5)

where all k2
i = 2 (tachyons), s = −(k1 + k2)

2 etc., α(s) = 1 + s/2, and we define

Γ∞(σ) ≡ 2ΓEuler(σ) cos
πσ

2
Γp(σ) ≡ 1− pσ−1

1− p−σ
for σ ∈ C . (6)

p-adic integration can be defined so that∫
Zp
dz = 1 and

∫
ξS

dz = |ξ|p
∫
S

dz for ξ ∈ Qp, S ⊂ Qp . (7)

Amazingly,
∏

v Γv(z) = 1 where
∏

v includes v =∞ and also v = p for all primes.
So we get the “adelic” relation [Freund-Witten ’87]

A(4)
∞ = 1/

∏
p

A(4)
p (cf. |z|∞ = 1/

∏
p |z|p for rational z) . (8)
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2. p-adic AdS/CFT
A p-adic CFT should be defined by correlators, like

〈O(z)O(0)〉 =
COO
|z|2∆

p

, 〈O(z1)O(z2)O(z3)〉 =
COOO

|z12z23z31|∆p
, (9)

where zij ≡ zi − zj. The zi dependence is completely fixed by invariance under
p-adic linear fractional transformations:

g ∈ PGL(2,Qp) acts as g(z) =
az + b

cz + d
, ad− bc 6= 0 . (10)

The p-adic Veneziano amplitude comes from a 4pt function of vertex operators
Vk(z) = :eik·X(z) : in a free p-adic CFT: schematically,

A(4)
p ∼

∫
Qp

dz
〈
Vk1

(z)Vk2
(0)Vk3

(1)Vk4
(∞)

〉
. (11)

The “bulk” should be a coset space like SL(2,R)/U(1) = EAdS2 (cf. [Zabrodin ’89])

PGL(2,Zp) ⊂ PGL(2,Qp) is the maximal compact subset, and
PGL(2,Qp)/PGL(2,Zp) is the tree previously discussed! [Bruhat-Tits ’72]
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2.1. Action in the bulk

In place of

Sbulk =

∫
EAdS2

d2z
√
g

[
1

2
(∂φ)2 + V (φ)

]
(12)

it is natural to study

Stree =
∑
〈ab〉

1

2
(φa − φb)2 +

∑
a

V (φa) (13)

where 〈ab〉 means that we are summing over adjacent vertices in the tree.

The linearized equation of motion involves only m2
p = V ′′(0):

(� + m2
p)φa = 0 where �φa =

∑
〈ab〉
a fixed

(φa − φb) , (14)

and the bulk-to-bulk propagator is

G(a, b) =
ζp(2∆)

p∆
p−∆d(a,b) where m2

p = − 1

ζp(∆− 1)ζp(−∆)
(15)

and d(a, b) is the number of steps from a to b on the tree.
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2.2. Two technical detours

1. We will often encounter local zeta functions

ζ∞(σ) ≡ π−σ/2ΓEuler(σ/2) and ζp(σ) ≡ 1

1− p−σ
, (16)

so named because

ζRiemann(σ) =
∏
p

ζp(σ) and Γv(σ) =
ζv(σ)

ζv(1− σ)
, v =∞ or p . (17)

2. We allow the boundary to be an
n-dimensional vector space over Qp.

• The simplest choice is the unramified
extension of Qp of degree n.

• We call this extension Qq, with q = pn.

• Pictured at right is the case n = 2.

• Norms |~z|q and depth direction z0 still
take values pω with ω ∈ Z.

¥

Qp

Qp
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2.3. Three-point function—warmup

Recall the standard story of three-point functions in Euclidean AdSn+1/CFTn:

− log

〈
exp

{∫
Rn
dnz φ0(~z)O(~z)

}〉
= extremum

φ(z0,~z)→φ0(~z)
Sbulk[φ] , (18)

0

2

3z K

K

K

g
3

)

z

z

(x, x

1

R
n

n+1

Integrate
over all of
AdS

x

• Differentiate (18) with respect to φ0(~z1),
φ0(~z2), φ0(~z3), set g3 = V ′′′(0).

• Bulk-to-boundary propagators are simple
in terms of ζ∞:

K(x; ~z) =
ζ∞(2∆)

ζ∞(2∆− n)

z∆
0

(z2
0 + (~z − ~x)2)∆

so that
∫
Rn
dnz K(x; ~z) = 1

〈O(~z1)O(~z2)O(~z3)〉 = −g3

∫
AdSn+1

dn+1x
√
g K(x; ~z1)K(x; ~z2)K(x; ~z3)

=
C

(∞)
OOO

|~z12|∆|~z23|∆|~z13|∆
, C

(∞)
OOO = −g3

ζ∞(∆)3ζ∞(3∆− n)

2ζ∞(2∆− n)3
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2.4. Three-point function

The “traditional” expression for C(∞)
OOO is equivalent but involves π explicitly:

C
(∞)
OOO = −g3π

−nΓEuler(∆/2)3ΓEuler(3∆/2− n/2)

2ΓEuler(∆− n/2)
. (19)

cb

x

z1 z2 z3 The p-adic version of the three-point
calculation factorizes conveniently into
external legs times an internal summation:

〈OOO〉 = −g3

∑
x

3∏
i=1

K(x; ~zi)

= −g3

[
3∏
i=1

K(c; ~zi)

]
×∑

x

Ĝ(c, b)Ĝ(b, x)3

(20)

The final result: (absence of π factors is now inevitable)

〈O(~z1)O(~z2)O(~z3)〉 =
C

(p)
OOO

|~z12~z23~z13|∆
, C

(p)
OOO = −g3

ζp(∆)3ζp(3∆− n)

ζp(2∆− n)3

(21)
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2.5. Three-point function—details

We require bulk-to-boundary and un-normalized bulk-to-bulk propagators:

K(x; ~z) =
ζp(2∆)

ζp(2∆− n)

|z0|∆p
(sup{|z0|p, |~z − ~x|q})∆ , Ĝ(a, b) ≡ p−∆d(a,b) (22)

K solves (� + m2
p)K = 0 with∫

Qq

dnz K(x; ~z) = 1 .

The sum over position of x supplies an
overall factor:∑
x

Ĝ(c, b)Ĝ(b, x)3

= 3
∞∑
m=1

p−∆m

[
1 +

∞∑
`=1

(q − 1)q`−1
(
p−∆`

)3

]

+

[
1 +

∞∑
`=1

(q − 2)q`−1
(
p−∆l

)3

]
=
ζp(∆)3ζp(3∆− n)

ζp(2∆)3
,

z2

z1

z3

c
b

x

ℚq

K

K

K

m steps

ℓ steps

c is
fixed

x a
nd
b

are
mo
bile
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3. The four-point function
The dominant contribution to the four-point function in the limit
|~z12||~z34| � |~z13||~z24| takes the form〈

4∏
i=1

O(~zi)

〉
leading

log

= g4

ζ(2∆)4ζ(4∆− n)

ζ(2∆− n)4ζ(4∆)

log(|~z12||~z34|/|~z13||~z24|)
|~z13|2∆|~z24|2∆

| · | = | · |∞ or | · |q , ζ = ζ∞ or ζp , log = loge or logp .

(23)

For v = ∞, this is a restatement of results of [D’Hoker et al ’99]; full expression is
available and is a complicated function of two independent cross-ratios,

u ≡ |~z12||~z34|
|~z13||~z24|

ũ ≡ |~z14||~z23|
|~z13||~z24|

. (24)

For v = p, the full expression (still just the 4pt contact diagram) for u ≤ 1 is〈
4∏
i=1

O(~zi)

〉
=

[
1

ζp(4∆)
logp u−

(
ζp(2∆)

ζp(4∆)
+ 1
)2

+ 3

]
g4

ζp(2∆)4ζp(4∆−n)/ζp(2∆−n)4

|~z13~z24|2∆

(25)
→Where did logp u come from, and why is there no ũ dependence?
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3.1. Ultrametricity

|z|p (and |~z|q) are “ultra-metric:” |x + y| ≤ sup{|x|, |y|} .

We want this small Theorem: u < 1 implies ũ = 1.

Lemma (tall isosceles): If x + y + z = 0, then |x| = |y| ≥ |z|,
up to relabeling of x, y, and z.

z

x y

tall isoscelesProof of Lemma:
Relabel so that |z| ≤ |x| and |z| ≤ |y|.
Then |x| = |y+z| ≤ sup{|y|, |z|} = |y|. Likewise |y| ≤ |x|. So |x| = |y|, QED.

Proof of Theorem:
Relabel so that |z12| ≤ |z34| and |z13| ≤ |z24|. Then |z12|< |z24|.
z12 + z24 − z14 = 0, so |z14|= |z24| by the Lemma.
Case I: |z34| > |z13|. Then |z14| = |z34| by the Lemma.
... u = |z12z34|/|z13z24| = |z12|/|z13|< 1, so |z23| = |z13| by the Lemma.
Case II: |z34| < |z13|. Then |z13| = |z14|= |z24|> |z12|, so again |z23| = |z13|.
Case III: |z34| = |z13|. Then |z12| = u|z13|< |z13|, so again |z23| = |z13|.
Put it all together: ũ = |z14z23|/|z13z24| = 1, QED.



p-adic AdS/CFT 14 S. Gubser

3.2. A distance formula

If u < 1, then− logp u = d(c1, c2) is the number of steps between c1 and c2.

z1

z2

z3

z4

c1 c2

d(c1,c2)

ℚq

The situation closest to normal intuition is
|~z12|, |~z34| < |~z13|, |~z14|, |~z24|, |~z23|.
Then |~z13| = |~z14| = |~z24| = |~z23| (Lemma).

But the weaker result ũ = 1 holds even if
|~z34| is big, provided only u < 1.

K

K

K

K

z1

z2

z3

z4

c1 c2

x

b

ℚq

c1 is
fixed

c2 is
fixed

x a
nd
b

are
mo
bile

〈OOOO〉 = −g4

∑
x

4∏
i=1

K(x; ~zi)

There are d(c1, c2) equivalent ways
to locate the b-x branch.

Hence we get a factor of− logp u in 〈OOOO〉.



p-adic AdS/CFT 15 S. Gubser

3.3. Form of the four-point function

Non-logarithmic terms come from “subway
diagrams” of a slightly different topology:

Despite appearances, we’re never including
exchange diagrams!

Only the g4φ
4 interaction is included in our

published calculations, but exchange
diagrams don’t drastically change the story:
same logp u appears.

z1

z2

z3

z4

c1 c2

x
b

ℚq

Logarithmic behavior suggests a small anomalous dimension forO2:

• Suppose ∆O2 = 2∆O + δ with δ small.

• O(~z1)O(~z2) ∼ |~z12|−δO2(~z1) if |~z12| is small.

•
〈∏4

i=1O(~zi)
〉
∼ |~z12~z34|δ〈O2(~z1)O2(~z3)〉 ∼ |~z12~z34|δ

|~z13|4∆+2δ ≈ 1−δ log u
|~z13~z24|2∆ .

• Similar mechanism is responsible for log u behavior in classic AdS/CFT.

What about the field theory on the boundary, then?
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3.4. Excursion into field theory

A Fourier transform on Qq exists which exhibits most standard properties:

f (x) =

∫
Qq

dnk χ(kx)f̂ (k) χ(ξ) = e2πi[ξ] . (26)

Details of χ are slightly tricky. Let’s be satisfied with χ : Qq → S1 ⊂ C such that
χ(ξ1 + ξ2) = χ(ξ1)χ(ξ2): an “additive character.”

Suppose Gφφ(k) = 〈φ(k)φ(−k)〉 =
1

|k|s + r
for real r, s but with k ∈ Qq.

Then we have UV divergences that work similarly to QFT on Rn:

l

∫ Λ

Qq

dn`

|`|s + r
∼ Λn−s diverges as Λ→∞ if n > s

where
∫ Λ means we restrict |`| < Λ.

Can we get a p-adic Wilson-Fisher fixed point starting from φ4 theory?

S =

∫
Qq

dnk
1

2
φ(−k)(|k|s + r)φ(k) +

∫
Qq

dnx
λ

4!
φ(x)4 . (27)
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3.5. The funny thing about effective field theory

Integrating out a momentum shell generates perfectly local interactions with no
derivatives [Lerner-Missarov ’89]. For example: If |k| < 1, then

....

h
ar

d

2k

l
1

l
3

soft

l I2(k) ≡
∫
Uq

dn`1 d
n`2 d

n`3

(1 + r)3
δ(
∑3

i=1 `i − k) =̇ I2(0) . (28)

Uq = {` ∈ Qq : |`| = 1} is the Λ = 1 momentum shell.

• To demonstrate =̇ we simply set ˜̀
3 = `3 − k.

q: hard

pℤq: soft

ℤq

Given
|k| < 1, we have |`3| = 1 iff | ˜̀3| = 1, by the Lemma.

• `3 → ˜̀
3 is a bijection on Uq, and dn`3 = dn ˜̀

3.
Similar arguments apply for any graph.

• Seff =

∫
dnk

1

2
φ(−k)|k|sφ(k) +

∫
dnxVeff(φ) .

• Operators φ(x)m mix among themselves but not with φ∂`φ like in real case.

• I suspect this is closely related to simplicity of 4pt function: OPE ofO(x)O(0)
is probably very sparse, with no descendants.
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4. Loose ends and future directions
4.1. A BTZ-like construction

In [Heydeman-Marcolli-Saberi-Stoica ’16] a p-adic
version of Euclidean BTZ was suggested.

• Inspiration is the representation of a
torus as C× modulo the map z → qz
where q = e2πiτ .

• Similarly identify Q×p modulo z → qz
where |q| > 1.

C

1

q

• Identifying the bulk by(
q 0

0 1

)
∈ PGL(2,Qp)

gives a cycle of length
logp |q|.

Here p = 3
and logp |q| = 6.
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4.2. A connection to inflation

Eternal symmetree [Harlow-Shenker-Stanford-Susskind ’11]:

• An idealization of eternal inflation.

• A given causal region can nucleate new de Sitter vacua which fall out of causal
contact and split again.

• A statistical model is defined on the tree for
Q2 where each node is a causal patch.

• The forward-time boundary is Q2, which is
more descriptive of the late-time
multiverse than the forward-time boundary
of de Sitter.

• 2-adic symmetry is realized on statistical correlators of observables at this forward-
time boundary.

Q
2

ti
m

e
Single-cell probabilities evolve by Pm(child) = GmnPn(parent)
where m, n run over colors representing different dS vacua.

N -point correlators comes from joint probabilities Pn1...nN where ni specifies color
of cell ai, eventually all taken to the far future.
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4.3. Conclusions and future directions
• A holographic direction is natural in describing the p-adic numbers: z0 is the
p-adic accuracy of a truncated p-nary expansion of z.

• A simple classical action on the tree whose boundary is Qq gives rise toN -point
functions closely analogous to standard results in AdS/CFT.

– Normalizations are naturally expressed in terms of local zeta functions ζv(∆).

• Why are the p-adic results so close to classic AdS/CFT for N = 3 and N = 4,
but not quite the same? (N = 2 suffers some IR regulator issues.)

• What about fluctuating geometry in the tree graph?

• What about Lorentzian signature?

• Ultra-metricity leads to some interesting simplifications in QFT.

– Momentum shell integration, counter-terms, and OPE all seem simpler.

– Form of holographic 4pt function hints at similar simplifications.

• Can we give a more symmetry-based presentation of p-adic CFT (cf. [Melzer ’89]),
and/or find explicit AdS/CFT dual pairs?
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