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A Case for 34+1 Dimensions

Nature prefers Yang-Mills theory in exactly 143 dimensions:
Coordinates x*#, momenta p*.

So let us stay there!

Split index u = 0, 1,2, 3 into spinorial indices a = 1,2 and ¢ =1,2.

Interesting bijection RY? — Hermitian(2 x 2), p# s p@<.

Explicitly:
B (po +ps  p1— ipz)
Pac — .
pP1+11p2 Po— P3

Gluons are labeled by momenta p* with p* = p#p, = det pos = 0 and
helicity £1. Momentum factors: p®% = AY)\9.



Super-Spinor-Helicity and Amplitudes

There is a beautiful extension to maximally supersymmetric N' = 4 theory:

One introduces for each leg 5 a GraBmann spinor 773-4 where A =1,2,3,4.
With Pe% = D ASAS and Q4 = D )\?7734 the (color stripped) tree
amplitudes for n particles are the known [ brummond, Henn 081 distributions

n—l_ 54(Paa)58(QaA) .
~12)(23) .. (n— 1, n){nl) PuliAs: Az i),

where (¢m) = €45 P50 and [¢m] = 6&55\2‘5\,@.
All external helicity configurations are generated by expansion in the njA.

Super-helicity k corresponds to the terms of order n**.
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GraBmannian Integrals and Amplitudes, |
A GraBmannian space Gr(k,n) is the set of k-planes intersecting the
origin of an n-dimensional space. £ = 1 is ordinary projective space.

“Homogeneous" coordinates are packaged into a k x n matrix C' = (¢4 ).
C' and A-C with A € GL(k) correspond to the same “point” in Gr(k,n).

Build super-twistors WA = (,uj : )\O‘, 773-4) w. Fourier conjugates A% — [i5'.

GraBmannian integral formulation of tree-level N¥=2MHV,, amplitudes:

Ank:

Y

dErnC 54k|4k(0 . W)
/vol(GL(k)) ... k2. k+1)..(n..n+k_1)

The (¢4 + 1...i + k — 1) are the n cyclic k£ x k minors.
Integration is along “suitable contours”. [ Arkani-Hamed, Cachazo, Cheung, Kaplan ‘00 |



GraBBmannian Integrals and Amplitudes, |l

For “most” points on G(k,n) we may use the GL(k) symmetry to write

Cl,k+1 C1k4+2 - Cin
C = ik ' '

Ck.k+1 Ckk+2 - Ckn

The GraBmannian integral A,  simplifies to

/ HZ:l H?:k—kl dcq; ﬁ544(WA—|— 2”: ) -W.A)
(1...k)2...k+1)...(n...n+k—1) a ai” Vi

a=1 1=k+1

Fourier-transforming back to spinor-helicity space, all tree-level
N*—2MHV,, amplitudes may be obtained.
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Symmetries

The amplitudes enjoy N' = 4 superconformal symmetry (A,B=1...8):
JB AL =0, with J*P € psu(2,2[4)
However, there is also a “non-local” dual superconformal symmetry:

JAB AL =0, with J4P € psu(2,2[4)dual

Commuting J and J, one obtains Yangian symmetry. [ bDummond, Henn, Plefia ‘09 |
" ] 11 AB . A
With “local” generators J: Wj aWB supertrace, where W1 are

super-twistors, we can succinctly express |t as

B _ ZJ;ABa j.AB ZJACJCB Z H])

1<J

This is how integrability first appeared in the planar scattering problem.
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Dual GraBmannian Integrals and Amplitudes

In the dual description one can employ 4|4 super momentum-twistors Z;“.

With k& = k — 2, there is an equivalent “dual” description on Gr(l%,n):

[ Mason, Skinner ‘09; Arkani-Hamed et.al. ‘09 ]

B 54(Pozd)58(QaA)/ dl%néf 54l%|4l%(év . Z)

Ank = (12)(23) ... (n1) J vol(GL(k)) (1...k)...(n...k—1)

Note that the £ = 2 MHYV part factors out.

The fact that the two formulations are related by a simple change of
variables is due to dual conformal invariance, and thus Yangian invariance.



Deformed Symmetries
[ Ferro, tukowski, Meneghelli, Plefka, MS ‘12 ]

Of particular interest is the central charge generator of gl(4|4):

C:ZC]' with Cj:)\o.‘i—j\é‘a Aa

— — N g 2
TOAY T oxe " on?

g=1

For overall psu(2,2|4) we have C = 0. So we can relax the “local”

condition ¢; = 0. This deforms the super helicities h; =1 — %cj.

This yields something well-known: The Yangian in evaluation representa-
tion. Deforming the c¢; switches on the parameters v;. More below.

JAB =N JgAB - JAB =N JACTE — (i )+ Y vy JPP
j=1

71=1 1<J
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Deformed GraBBmannian Integrals

[ Ferro, tukowski, MS, in preparation |

One could then ask how the GraBmannian contour formulas are deformed.
The final answer is exceedingly simple, and very natural. Define

+ ¢
vy =
Requiring Yangian invariance, we find, with v;.;k =v; forj=1,...,n
/ dEnC 54k|4k(c . W)
vO(GL(K)) (1, . k)1 =1 . (n, oo k—1) T on

Note that it is not really the GraBmannian space Gr(k,n) as such that is
deformed, but the integration measure on this space. GL(k) preserved!
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Deformed Dual GraBmannian Integrals

[ Ferro, tukowski, MS, in preparation |

It is equally natural to ask how the dual GraBmannian integrals deform.
Using the parameters vi, we found

J
04 (P**)8%(Q*)

(12)1Hvs —v1 | (p1)1+el —vn

></ dEné §Aklk (. Z)

vol(GL(K)) (1, .. iy ™ . (n, . h—1) %

The number of deformation parameters equals n—1 since

k= for 7=1,...,n.
Note that both the MHV-prefactor and the contour integral are deformed.

12
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Why?

Why should we consider this deformation? Here are some of the reasons:

e \We shall see that it is very natural from the point of view of integrability.
e In fact, constructing amplitudes by integrability (arguably) requires it.
e Amplitudes are related to the spectral problem, where it is indispensable.

e Most importantly: |t promises to provide a natural infrared regulator!

The last point was our original motivation. Interestingly, we recently
learned that this deformation had been already studied as an infrared
regulator in twistor theory in the early seventies by Penrose and Hodges.
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Meromorphicity Lost and Gained

Let us take another look at the deformed GraBmannian contour integral:

/ dEnC 54k|4k(c . W)
R (k1) e e

vol(GL(K)) (1

7 °

Choosing the parameters vjj.E to be non-integer, we see that the poles in
the variables ¢,; generically turn into branch points.

Important point: We can no longer use the BCFW recursion relations, as
they are based on the residue theorem, which does not apply anymore.

Sounds bad?

What we can hope to gain is complete meromorphicity in suitable combi-
nations of the deformation parameters vji. This should fix the contours.
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A Toy Meromorphicity Experiment

Consider Euler's first integral, the beta function B(v1,vs).

1 1
d
/0 ‘ cl=v1(1 — ¢)t—v2

For v1,v2 € N Euler derived (”(1;?:)(2’”_21_)})' The analytic continuation for

arbitrary vi,v9 € C is FISZJJEEEJZQ)) Meromorphic in both v; and vs.

This is not obvious from the integral. This problem was fixed by | rochhammer 01:

1 /d 1
: . C
(1 _ 627‘(’2’01)(1 _ 627727)2) C Cl—’ul(l _ C)l—vg

where the contour C goes at least two times through the cut:

[ Wikipedia, the free encyclopedia ]
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Yangian Invariants as Spin Chain States, |

[ Frassek, Kanning, Ko, MS ‘13; Chicherin, Derkachov, Kirschner ‘13 |

How to construct, generally and systematically, Yangian invariants?
It was recently proposed to identify them as special spin-chain states |¥).

How does the Yangian appear for spin chains with gl(m|n) symmetry?

Package the “local’ generators JJAB into a Lax operator L;(u,v’):
/ 1 AB \
Lj(u,v;) =1+ ceapdiT = -

Then build up a monodromy matrix M (u, {v}}):

M(u) = Ly(u,v}) .. Lo(u,ol) = e

n

Here multiplication is both a tensor product and a matrix product.
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Yangian Invariants as Spin Chain States, ||

[ Frassek, Kanning, Ko, MS ‘13; Chicherin, Derkachov, Kirschner ‘13 |

The Yangian generators, see above, appear by expanding at u = oc:

1 1
M‘AB(U) _ 5.AB 4+ _J.AB 4 —
U u?

JAB L.

Note that the deformation of the JAB indeed appears naturally.

Yangian invariance is now elegantly encoded as

MAB(w) - |0) = 6P| W) or even M(u)-|¥) = |T)

In usual spin chains we take the trace, and study Tr M (u) - |¥) = t(u)|¥).

17
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Yangian Invariants and Bethe Ansatz, |

[ Frassek, Kanning, Ko, MS ‘13 ]

Therefore, the machinery of the algebraic Bethe ansatz may be applied.
Already in the simpler case of gl(n) compact reps much of the structure
Of the [ Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka ‘12 ] On—She” dlagramatICS |S fOU nd.

Let us use “twistor variables” W; in the fundamental rep of gl(n).

The simplest is the n = 2, k = 1 two-site invariant, with C = ( 1 ¢;2 ),

1

dc
Wo 1) j{ 1+1§2 0" (Wi + c12W2) N \

612 1 2

Here the contour is circular around zero, and s9 € N is a Dynkin label.
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Yangian Invariants and Bethe Ansatz, Il

[ Frassek, Kanning, Ko, MS ‘13 ]

The next simplest cases are the three-site invariants with n = 3.

For £ = 1 one gets, with C' = ( 1 c19 13 ) Q A
1 2 3 2 3

dcio dc
Wy ) ~ 75 12 dC13 s L e W+ rs W)

1+so 1-+s
C12 2013 ’
| 1 2 1
while for £ = 2 one gets, with C = U e , \T/
O 1 623 1 2 3 3

dcis dc
U3 9) 7{ s 0" (W1 + c13Ws) 6" (Wa + ca3Ws)

14517 1+s9
C13  Co3

All contours are closed and encircle zero.
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Bethe Ansatz, Permutations, and Yangian Invariants

Since we solve M (u) - |¥) = |¥) and not Tr M(u) - |¥) = t(u)|¥) the
Bethe ansatz is more constraining. Apart from the Bethe roots, we find

n n
||U—U ||U—’U
j: :

Thus, Yangian invariance requires the existence of a permutation o with

_|_ L _
Vo) = Y5

Exactly the condition of | seier, Broedel, rosso 141 fOr deformed on-shell diagrams.
ShOWGd relat|0n tO dlagramatICS in [ Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka ‘12 |.

1
v v v v
ool > — ool
vi vy VA v, vy
2 3 20
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Direct Construction of Yangian Invariants

[ Chicherin, Derkachov, Kirschner ‘13 ]

The Bethe ansatz is interesting, but constructing the states is hard.
A more direct method uses an intertwiner, which in twistor variables reads

Bjr(u) = (-Wk ' afvj> u

Note u € C. Representation changing. Satisfies Yang-Baxter. Intertwines:

Li(w,u;)Lg(u, ug)Big(u; —uk) = Bir(u; — ug) Lj(u, ug) Lk (u, u,)

Graphical Depiction:

Use to make a Bethe-like ansatz to construct the invariants |U).
Use intertwining relation to show M (u) - |U) = |U) iff for “correct” wuy.

21
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General Construction

[ Broedel, De Leeuw Rosso; Kanning, tukowski, MS ‘13 ]
Every on-shell diagram corresponds to some permutation . | araniHamed etal 12].
Resolve into “adjacent” transpositions: ¢ = 7y ...7p = (j1k1) ... (jpkp)

Bethe-like ansatz

|\Ij> — lelﬂ (ﬂl) e ijkp(ﬂp)|0>

Bethe-like equations yield i, = v, (k) =V, (j,) With 7, = (J1k1) . . . (Jpkp)

This again leads to the condition

_|_ L _
Vo) = Y

In the special case of the the top-cell diagram, o is a cyclic k-shift.
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Example

Let us quickly look at n =4, k = 2:

Permutation:
1 2 3 4
o = ( 3 4 1 9 ) = (12)(23)(12)(24)
Yangian invariant:

\\If4,2> = [512(?11 — 02)[523(?}1 — US)B1Q(U2 — U3)824(02 — U4)|0>

On-Shell diagramatics:
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Contours
AS p0|nted Out by [ Chicherin, Derkachov, Kirschner ‘13 ] Bjk(U) aCtS ||ke d BCFW Sh|ft

0 \" do ko
Bir(u) = (—Wk : 0)/\/3) 2/(3041+“ eV O

Recall super-twistors ZJA = (i, 5\?, 773-4) w. Fourier conjugates A$ — 1.
This is however merely formal, unless the contour C is rigorously specified.
Note that

e a Hankel contour does not work, in general

e for u # 0 BCFW recursion, based on residue theorem, no longer works

Historical comment: We were told by Andrew Hodges, that the above
intertwiner had already been invented by Penrose in the early 70ties.
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The Top-Celi

For the top-cell of the GraBmannian with general n, £ the permutation
o is just a cyclic shift by £. This allows to derive the general deformed

GraBmannian integral stated initially. | rero, tukowski, s, in preparation

Important:  The top-cell is the deformed tree-level amplitude. BCFW-
decomposition breaks down when deforming, as shown in [ seisert, Brocdel, Rosso ‘141.
But it is not needed!

[ Figure from arXiv: 1401.7274: Beisert, Broedel, Rosso ‘14 ]
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Outlook

e Work out general deformed tree-level amplitudes explicitly.
e Exciting relations to generalized multi-variate hypergeometric functions.
e Establish that the deformed GraBmannian is useful for loop calculations.

e Deform the amplituhedron?

26

26



