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It would be nice to have a solvable model of holography.

theory bulk dual anom. dim. chaos solvable in 1/N

SYM Einstein grav. large maximal no
O(N) Vasiliev 1/N 1/N yes
SYK “`s ∼ `AdS ” O(1) maximal yes
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Naive expectations for QM system dual to AdS2

I thermodynamics: large entropy even at low temperature

I dynamics: four point function should include gravitational
scattering and reveal whatever spectrum of bulk fields we have

I symmetry: approximate conformal invariance; expect e.g.
two point function on circle to be

〈O(τ)O(0)〉 =

(
1

sin πτ
β

)2∆

the relationship with conformal symmetry is subtle!



The Sachdev-Ye-Kitaev model
QM of N majorana fermions ψ1, ..., ψN , which satisfy

{ψa, ψb} = δab.

The Hamiltonian consists of all four-body interactions

H =
∑

a<b<c<d

jabcd ψaψbψcψd

with random coefficients

〈j2
abcd〉 =

J2

N3
(no sum)

I Dimensionless coupling is βJ. Interesting behavior at βJ � 1.

I Can also consider a version with fermions interacting in groups
of q, instead of four. q →∞ and q → 2 are simpler limits.

I System “self-averages.”



Feynman diagrams

Diagrams for the two point and four point functions at leading
order in 1/N:

+ + + +

+ + + +

[Kitaev 2015]



The disorder average

After integrating over jabcd , can introduce new fields G ,Σ. Σ is a
Lagrange multiplier that sets G (τ1, τ2) = 1

N

∑
a ψa(τ1)ψa(τ2).

After integrating out the fermions,

〈Z (β)〉J =

∫
DGDΣ e−N I (G ,Σ)

I (G ,Σ) = −1

2
log det(∂τ − Σ)

+
1

2

∫ β

0
dτ1dτ2

[
Σ(τ1, τ2)G (τ1, τ2)− J2

q
G (τ1, τ2)q

]
[Parcollet/Georges/Sachdev, Kitaev]

I this is an exact rewrite of the theory

I G ,Σ are the master fields, should be the “bulk theory”
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Plan for the rest of the talk

1. Saddle point

2. Quadratic 1/N fluctuations about saddle



Saddle point
Saddle point equations Σ∗ = J2Gq−1

∗ , and G∗ = (∂τ − Σ∗)
−1 can

be solved numerically, or exactly at large q.
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Saddle point

To get large N thermodynamics, plug G∗,Σ∗ back into the action,
Z (β) ≈ e−N I (G∗,Σ∗).
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Large entropy even at very low temperature, provided q > 2.
(Striking agreement with exact diagonalization numerics, [Gur-Ari et.

al. in progress])
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Fluctuations

I (G ) = I (G∗) +

∫
δG (τ1, τ2)Q(τ1τ2; τ3τ4)δG (τ3, τ4) + ...

The quadratic form Q gives the 1/N term in the fermion 4pt fn:

1

N2

∑
a,b

〈ψa(τ1)ψa(τ2)ψb(τ3)ψb(τ4)〉 = 〈G (τ1, τ2)G (τ3, τ4)〉

= G∗(τ1, τ2)G∗(τ3, τ4) +
1

N
Q−1(τ1τ2; τ3τ4) + ...

For βJ � 1 the quadratic form Q is conformally invariant. Can
diagonalize and find (for χ < 1)

〈4pt〉conn.

〈4pt〉disc.
=

“∞”

N
+

1

N

∞∑
m=1

c2
hm
χhmF (hm, hm, 2hm, χ) + ...
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Fluctuations: nonzero modes

The values hm represent the conformal dimensions of the operators
appearing in the OPE.

hm

The dimensions are roughly evenly spaced

4 6 8 10 12 14

h1 h2 h3 h4 h5 h6

They correspond to Om = ψa∂
2m+1
τ ψa with O(1) anomalous

dimensions. They demand a tower of bulk fields in the dual,
reminiscent of a string spectrum in two dimensions.



Fluctuations: zero modes

I At large βJ, the action is invariant under general
reparameterizations τ → f (τ) [Kitaev]

G∗ → Gf =
(
f ′(τ1)f ′(τ2)

)∆
G∗(f (τ1)− f (τ2))

The zero modes are NG bosons for the spontaneously broken
reparameterization symmetry, f (τ) = τ + εne

−2πinτ/β

I The leading action for these comes from a small explicit
breaking of conformal symmetry at order (βJ)−1:

Q = 0 +
#n

βJ
− #n2

(βJ)2
+ ...

I This leads to a finite correlator

〈4pt〉conn. =
1

N

[
(βJ)Fbig (τ1...τ4) +

∞∑
n=1

c2
hn
χhnF (hn, hn, 2hn, χ)

]
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Fluctuations: zero modes (II)

One can show that the effective action for the zero modes is the
Schwarzian derivative,

Ieff = −#

J

∫
Sch(f , τ)dτ.

This exactly matches what you get from dilaton gravity
[Almheiri/Polchinski, Jensen, Maldacena/DS/Yang, Engelsoy/Mertens/Verlinde].
(See Gong Show talk by Zhenbin Yang later today!)



The Fbig contribution is in some ways similar to the contribution
of the stress tensor in a 2d CFT,

I both are associated to reparameterizations or “boundary
gravitons”

There are key differences:

I in 2d, the contribution is conformal, here it is not

I stress tensor (gravity) dominance in 2d requires sparseness,
here it happens automatically because of the βJ enhancement



Summary

I SYK is an interesting solvable QM system

I the dominant low-energy physics is determined by
spontaneously and (weakly) explicitly broken conformal
symmetry

I this aspect is shared with dilaton gravity in AdS2

I in addition, the model has states reminiscent of a stringy dual
with `s ∼ `AdS

NEXT: find the black hole interior in this model...

Thanks!
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Eigenvalues of the kernel

k(h) = −(q − 1)
Γ( 3

2 −
1
q )Γ(1− 1

q )

Γ( 1
2 + 1

q )Γ( 1
q )

Γ( 1
q + h

2 )

Γ( 3
2 −

1
q −

h
2 )

Γ( 1
2 + 1

q −
h
2 )

Γ(1− 1
q + h

2 )
.


