The Sachdev-Ye-Kitaev model and $AdS₂$

Douglas Stanford

IAS

Aug 2, 2016

based on 1604.07818 with Maldacena; drawing on talks by Kitaev

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ X K 메 X K B X X B X X D X O Q Q O

KOX KOX KEX KEX E 1990

K ロ X K 메 X K B X X B X X D X O Q Q O

K ロ X K 메 X K B X X B X X D X O Q Q O

Naive expectations for QM system dual to $AdS₂$

- \triangleright thermodynamics: large entropy even at low temperature
- \triangleright dynamics: four point function should include gravitational scattering and reveal whatever spectrum of bulk fields we have
- \triangleright symmetry: approximate conformal invariance; expect e.g. two point function on circle to be

$$
\langle O(\tau) O(0) \rangle = \left(\frac{1}{\sin \frac{\pi \tau}{\beta}} \right)^{2\Delta}
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

the relationship with conformal symmetry is subtle!

The Sachdev-Ye-Kitaev model

QM of N majorana fermions $\psi_1, ..., \psi_N$, which satisfy

$$
\{\psi_{\mathsf{a}},\psi_{\mathsf{b}}\}=\delta_{\mathsf{ab}}.
$$

The Hamiltonian consists of all four-body interactions

$$
H = \sum_{a < b < c < d} j_{abcd} \psi_a \psi_b \psi_c \psi_d
$$

with random coefficients

$$
\langle j_{abcd}^2 \rangle = \frac{J^2}{N^3} \quad \text{(no sum)}
$$

- \triangleright Dimensionless coupling is βJ . Interesting behavior at $\beta J \gg 1$.
- \triangleright Can also consider a version with fermions interacting in groups of q, instead of four. $q \to \infty$ and $q \to 2$ are simpler limits.
- System "self-averages."

Feynman diagrams

Diagrams for the two point and four point functions at leading order in 1/N:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[Kitaev 2015]

The disorder average

After integrating over j_{abcd} , can introduce new fields G , Σ . Σ is a Lagrange multiplier that sets $G(\tau_1, \tau_2) = \frac{1}{N} \sum_a \psi_a(\tau_1) \psi_a(\tau_2)$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The disorder average

After integrating over i_{abcd} , can introduce new fields G, Σ . Σ is a Lagrange multiplier that sets $G(\tau_1, \tau_2) = \frac{1}{N} \sum_a \psi_a(\tau_1) \psi_a(\tau_2)$. After integrating out the fermions,

$$
\langle Z(\beta) \rangle_J = \int DGD \Sigma e^{-N I(G, \Sigma)}
$$

$$
I(G, \Sigma) = -\frac{1}{2} \log \det(\partial_{\tau} - \Sigma)
$$

$$
+ \frac{1}{2} \int_0^{\beta} d\tau_1 d\tau_2 \Big[\Sigma(\tau_1, \tau_2) G(\tau_1, \tau_2) - \frac{J^2}{q} G(\tau_1, \tau_2)^q \Big]
$$

KORK ERKER ADE YOUR

[Parcollet/Georges/Sachdev, Kitaev]

The disorder average

After integrating over j_{abcd} , can introduce new fields G, Σ . Σ is a Lagrange multiplier that sets $G(\tau_1, \tau_2) = \frac{1}{N} \sum_a \psi_a(\tau_1) \psi_a(\tau_2)$. After integrating out the fermions,

$$
\langle Z(\beta) \rangle_J = \int DGD \Sigma e^{-N I(G, \Sigma)}
$$

$$
I(G, \Sigma) = -\frac{1}{2} \log \det(\partial_{\tau} - \Sigma)
$$

$$
+ \frac{1}{2} \int_0^{\beta} d\tau_1 d\tau_2 \Big[\Sigma(\tau_1, \tau_2) G(\tau_1, \tau_2) - \frac{J^2}{q} G(\tau_1, \tau_2)^q \Big]
$$

[Parcollet/Georges/Sachdev, Kitaev]

- \blacktriangleright this is an exact rewrite of the theory
- \triangleright G , Σ are the master fields, should be the "bulk theory"

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Plan for the rest of the talk

- 1. Saddle point
- 2. Quadratic $1/N$ fluctuations about saddle

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Saddle point equations $\Sigma_* = J^2 G_*^{q-1}$, and $G_* = (\partial_\tau - \Sigma_*)^{-1}$ can be solved numerically, or exactly at large q.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Saddle point equations $\Sigma_* = J^2 G_*^{q-1}$, and $G_* = (\partial_\tau - \Sigma_*)^{-1}$ can be solved numerically, or exactly at large q.

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 $\bar{\Xi}$

 299

Saddle point equations $\Sigma_* = J^2 G_*^{q-1}$, and $G_* = (\partial_\tau - \Sigma_*)^{-1}$ can be solved numerically, or exactly at large q.

Conformal behavior at low temp $\beta J \gg 1$, [Sachdev/Ye, Parcollet/Georges]

$$
G_*(0,\tau)\to \frac{\text{const.}}{(\sin \frac{\pi \tau}{\beta})^{2\Delta}}, \qquad \Delta=\frac{1}{q}.
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

To get large N thermodynamics, plug G_* , Σ_* back into the action, $Z(\beta) \approx e^{-N I(G_*,\Sigma_*)}.$

イロト イ部 トイ君 トイ君 トッ 君の

 299

To get large N thermodynamics, plug G_* , Σ_* back into the action, $Z(\beta) \approx e^{-N I(G_*,\Sigma_*)}.$

Large entropy even at very low temperature, provided $q > 2$. (Striking agreement with exact diagonalization numerics, [Gur-Ari et. al. in progress])

 2990

Fluctuations

$$
I(G) = I(G_*) + \int \delta G(\tau_1, \tau_2) Q(\tau_1 \tau_2; \tau_3 \tau_4) \delta G(\tau_3, \tau_4) + ...
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

Fluctuations

$$
I(G) = I(G_*) + \int \delta G(\tau_1, \tau_2) Q(\tau_1 \tau_2; \tau_3 \tau_4) \delta G(\tau_3, \tau_4) + \dots
$$

The quadratic form Q gives the $1/N$ term in the fermion 4pt fn:

$$
\frac{1}{N^2} \sum_{a,b} \langle \psi_a(\tau_1) \psi_a(\tau_2) \psi_b(\tau_3) \psi_b(\tau_4) \rangle = \langle G(\tau_1, \tau_2) G(\tau_3, \tau_4) \rangle = G_*(\tau_1, \tau_2) G_*(\tau_3, \tau_4) + \frac{1}{N} Q^{-1}(\tau_1 \tau_2; \tau_3 \tau_4) + ...
$$

KOX KOX KEX KEX E 1990

Fluctuations

$$
I(G) = I(G_*) + \int \delta G(\tau_1, \tau_2) Q(\tau_1 \tau_2; \tau_3 \tau_4) \delta G(\tau_3, \tau_4) + \dots
$$

The quadratic form Q gives the $1/N$ term in the fermion 4pt fn:

$$
\frac{1}{N^2} \sum_{a,b} \langle \psi_a(\tau_1) \psi_a(\tau_2) \psi_b(\tau_3) \psi_b(\tau_4) \rangle = \langle G(\tau_1, \tau_2) G(\tau_3, \tau_4) \rangle
$$

= $G_*(\tau_1, \tau_2) G_*(\tau_3, \tau_4) + \frac{1}{N} Q^{-1}(\tau_1 \tau_2; \tau_3 \tau_4) + ...$

For $\beta J \gg 1$ the quadratic form Q is conformally invariant. Can diagonalize and find (for χ < 1)

$$
\frac{\langle 4pt\rangle_{conn.}}{\langle 4pt\rangle_{disc.}} = \frac{\omega_{\infty}^{n}}{N} + \frac{1}{N} \sum_{m=1}^{\infty} c_{h_m}^2 \chi^{h_m} F(h_m, h_m, 2h_m, \chi) + \dots
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Fluctuations: nonzero modes

The values h_m represent the conformal dimensions of the operators appearing in the OPE.

The dimensions are roughly evenly spaced

They correspond to $O_m = \psi_{\mathsf{a}} \partial_\tau^{2m+1} \psi_{\mathsf{a}}$ with $O(1)$ anomalous dimensions. They demand a tower of bulk fields in the dual, reminiscent of a string spectrum in two dimensions.

Fluctuations: zero modes

At large βJ , the action is invariant under general reparameterizations $\tau \to f(\tau)$ [Kitaev]

$$
G_* \to G_f = (f'(\tau_1)f'(\tau_2))^{\Delta} G_*(f(\tau_1) - f(\tau_2))
$$

The zero modes are NG bosons for the spontaneously broken reparameterization symmetry, $f(\tau)=\tau+\epsilon_n e^{-2\pi i n \tau/\beta}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Fluctuations: zero modes

At large βJ , the action is invariant under general reparameterizations $\tau \to f(\tau)$ [Kitaev]

$$
G_* \to G_f = (f'(\tau_1)f'(\tau_2))^{\Delta} G_*(f(\tau_1) - f(\tau_2))
$$

The zero modes are NG bosons for the spontaneously broken reparameterization symmetry, $f(\tau)=\tau+\epsilon_n e^{-2\pi i n \tau/\beta}$

 \blacktriangleright The leading action for these comes from a small explicit breaking of conformal symmetry at order $(\beta J)^{-1}$:

$$
Q = 0 + \frac{\#n}{\beta J} - \frac{\#n^2}{(\beta J)^2} + \dots
$$

KORK ERKER ADE YOUR

Fluctuations: zero modes

At large βJ , the action is invariant under general reparameterizations $\tau \to f(\tau)$ [Kitaev]

$$
G_* \to G_f = (f'(\tau_1)f'(\tau_2))^{\Delta} G_*(f(\tau_1) - f(\tau_2))
$$

The zero modes are NG bosons for the spontaneously broken reparameterization symmetry, $f(\tau)=\tau+\epsilon_n e^{-2\pi i n \tau/\beta}$

 \blacktriangleright The leading action for these comes from a small explicit breaking of conformal symmetry at order $(\beta J)^{-1}$:

$$
Q = 0 + \frac{\#n}{\beta J} - \frac{\#n^2}{(\beta J)^2} + \dots
$$

 \blacktriangleright This leads to a finite correlator

$$
\langle 4pt \rangle_{conn.} = \frac{1}{N} \left[(\beta J) \mathcal{F}_{big}(\tau_1 ... \tau_4) + \sum_{n=1}^{\infty} c_{h_n}^2 \chi^{h_n} F(h_n, h_n, 2h_n, \chi) \right]
$$

One can show that the effective action for the zero modes is the Schwarzian derivative,

$$
I_{\text{eff}} = -\frac{\#}{J} \int \text{Sch}(f,\tau) d\tau.
$$

KORK ERKER ADE YOUR

This exactly matches what you get from dilaton gravity [Almheiri/Polchinski, Jensen, Maldacena/DS/Yang, Engelsoy/Mertens/Verlinde]. (See Gong Show talk by Zhenbin Yang later today!)

The $\mathcal{F}_{bi\sigma}$ contribution is in some ways similar to the contribution of the stress tensor in a 2d CFT,

 \triangleright both are associated to reparameterizations or "boundary gravitons"

There are key differences:

- \triangleright in 2d, the contribution is conformal, here it is not
- \triangleright stress tensor (gravity) dominance in 2d requires sparseness, here it happens automatically because of the βJ enhancement

KORK ERKER ADE YOUR

Summary

- \triangleright SYK is an interesting solvable QM system
- \triangleright the dominant low-energy physics is determined by spontaneously and (weakly) explicitly broken conformal symmetry
- In this aspect is shared with dilaton gravity in $AdS₂$
- \triangleright in addition, the model has states reminiscent of a stringy dual with $\ell_{s} \sim \ell_{AdS}$

NEXT: find the black hole interior in this model...

Thanks!

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

イロメ 不優 メイミメイミメ

重

 $2Q$ (ロ) (個) (重 È ŧ ś × \blacktriangleleft

Eigenvalues of the kernel

$$
k(h) = -(q-1)\frac{\Gamma(\frac{3}{2}-\frac{1}{q})\Gamma(1-\frac{1}{q})}{\Gamma(\frac{1}{2}+\frac{1}{q})\Gamma(\frac{1}{q})}\frac{\Gamma(\frac{1}{q}+\frac{h}{2})}{\Gamma(\frac{3}{2}-\frac{1}{q}-\frac{h}{2})}\frac{\Gamma(\frac{1}{2}+\frac{1}{q}-\frac{h}{2})}{\Gamma(1-\frac{1}{q}+\frac{h}{2})}.
$$

K ロ X K 메 X K B X X B X X D X O Q Q O