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It would be nice to have a solvable model of holography.

theory H bulk dual ‘ anom. dim. ‘ chaos ‘ solvable in 1/N
SYM Einstein grav. | large maximal | no
O(N) || Vasiliev 1/N 1/N yes

SYK “Us ~ Lags” 0o(1) maximal | yes



Naive expectations for QM system dual to AdS,

» thermodynamics: large entropy even at low temperature

» dynamics: four point function should include gravitational
scattering and reveal whatever spectrum of bulk fields we have

» symmetry: approximate conformal invariance; expect e.g.
two point function on circle to be

1 2A
(0(1)0(0)) = ( )

s TT
n —%
Sin g

the relationship with conformal symmetry is subtle!



The Sachdev-Ye-Kitaev model

QM of N majorana fermions 1, ..., %y, which satisfy

{¢aa ¢b} = ab-

The Hamiltonian consists of all four-body interactions

H= > Jjobed Yatptictia

a<b<c<d

with random coefficients

, P
<Jabcd> = m (HO Sum)

» Dimensionless coupling is 5J. Interesting behavior at 5J > 1.

» Can also consider a version with fermions interacting in groups
of g, instead of four. g — oo and g — 2 are simpler limits.

» System “self-averages.”



Feynman diagrams

Diagrams for the two point and four point functions at leading
order in 1/N:

N,

0 - _00 - _000

[Kitaev 2015]



The disorder average

After integrating over jipeq, can introduce new fields G,X. ¥ is a
Lagrange multiplier that sets G(71,72) = 1 >, 1a(71)0a(2).
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The disorder average

After integrating over jipeq, can introduce new fields G,X. ¥ is a
Lagrange multiplier that sets G(71,72) = 3 >, ¥a(71)0a(72).
After integrating out the fermions,

(2(3)), = [ DGDE M

1(G,X) = —% log det(0r — X)

1 [ J?
+ 2/ dridm |:Z(T1,T2)G(T1, ) — ;G(T1,7'2)q
0

[Parcollet/Georges/Sachdev, Kitaev]
» this is an exact rewrite of the theory
» G, X are the master fields, should be the “bulk theory”



Plan for the rest of the talk

1. Saddle point
2. Quadratic 1/N fluctuations about saddle
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be solved numerically, or exactly at large q.
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Saddle point
Saddle point equations ¥, = J2GJ~ ' and G, = (9, — ¥£,)"! can
be solved numerically, or exactly at large q.
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Conformal behavior at low temp 8J > 1, [Sachdev/Ye, Parcollet/Georges]
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Saddle point

To get large N thermodynamics, plug G, X, back into the action,
Z(B) ~ e~ NG 2x),
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Saddle point

To get large N thermodynamics, plug G, X, back into the action,
Z(B) ~ e~ NG 2x),
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Large entropy even at very low temperature, provided g > 2.
(Striking agreement with exact diagonalization numerics, [Gur-Ari et.
al. in progress])



Fluctuations

I(G) = I(G.) + /5G(71772)Q(T172; 7374)0G (T3, 78) + ...
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The quadratic form Q gives the 1/N term in the fermion 4pt fn:
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Fluctuations

I(G) = I(G.) + /5G(71772)Q(7172; 7374)0G (T3, 78) + ...

The quadratic form Q gives the 1/N term in the fermion 4pt fn:

T YW (r)un(rsn(ma)) = (61, 72) (s, )
a,b

)

1
= Gi(71,m2)Gi(73,74) + NQ_I(T;[TQ; T373) + ...

For 5J > 1 the quadratic form Q is conformally invariant. Can
diagonalize and find (for x < 1)

(4pt)conmn. _ "oo” 1 i 2 X" F (hmy oy 2hm, X)) +
e ms "'m, my
<4pt>disc. N N m=1 r




Fluctuations: nonzero modes

The values h,, represent the conformal dimensions of the operators
appearing in the OPE.

Va 0

hm
% wb
The dimensions are roughly evenly spaced

h1 h2 hs ha hs he

4 6 8 10 12 14

They correspond to Oy, = 1,02™ 14, with O(1) anomalous
dimensions. They demand a tower of bulk fields in the dual,
reminiscent of a string spectrum in two dimensions.



Fluctuations: zero modes

> At large 8J, the action is invariant under general
reparameterizations 7 — f(7) [Kitaev]

Gy — G = (F/(11)f'(12)) GulF(m1) — F(72))

The zero modes are NG bosons for the spontaneously broken
reparameterization symmetry, f(7) = 7 + e,e277/8
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Fluctuations: zero modes

> At large 8J, the action is invariant under general
reparameterizations 7 — f(7) [Kitaev]

Gy — G = (F/(11)f'(12)) GulF(m1) — F(72))

The zero modes are NG bosons for the spontaneously broken
reparameterization symmetry, f(7) = 7 + e,e277/8

» The leading action for these comes from a small explicit
breaking of conformal symmetry at order (3J)~1:

Lt #
O=0+37~ Gip

+ ..

» This leads to a finite correlator

1 00
<4pt>conn. = N (BJ)Fbig(Tlu-Tll) + Z Ciz;,, thF(hny hna 2hn7 X)

n=1



Fluctuations: zero modes (II)

One can show that the effective action for the zero modes is the
Schwarzian derivative,

Ieff = —# /SCh(f,T)dT.
This exactly matches what you get from dilaton gravity

[Almheiri/Polchinski, Jensen, Maldacena/DS/Yang, Engelsoy/Mertens/Verlinde].
(See Gong Show talk by Zhenbin Yang later today!)



The Fpjg contribution is in some ways similar to the contribution
of the stress tensor in a 2d CFT,

» both are associated to reparameterizations or “boundary
gravitons”
There are key differences:
» in 2d, the contribution is conformal, here it is not

» stress tensor (gravity) dominance in 2d requires sparseness,
here it happens automatically because of the 3J enhancement



Summary

» SYK is an interesting solvable QM system

> the dominant low-energy physics is determined by
spontaneously and (weakly) explicitly broken conformal
symmetry

» this aspect is shared with dilaton gravity in AdS;
> in addition, the model has states reminiscent of a stringy dual
with £ ~ lags

NEXT: find the black hole interior in this model...
Thanks!
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Eigenvalues of the kernel
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