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Motivation
✦ An interesting observable of inflation is the tensor mode 


✦ Current bound (PLANCK+BICEP/KECK+BAO): r< 0.07


✦ A variety of current/near-future expts can reach r~10-2 (or maybe 10-3)


✦ Under some assumptions, a detection implies a strong UV sensitivity:

Lyth ’96

64 Inflation in effective field theory

derive the Lyth bound [252], which relates observable tensor modes to super-
Planckian displacements of the inflaton, ∆φ ! Mpl. We will begin with a
derivation of the Lyth bound in single-field slow-roll inflation, and then present
extensions to more general scenarios.

The Lyth bound
Substituting (2.38) into r = 16ε, we can relate the tensor-to-scalar ratio r to the
evolution of the inflaton field,

r = 8
(

1
Mpl

dφ
dN

)2

, where dN ≡ Hdt . (2.100)

Integrating (2.100) from the time N⋆ when modes that are observable in the
CMB exited the horizon, until the end of inflation at Nend ≡ 0 (see Fig. 2.7), we
get [252]

∆φ
Mpl

=
∫ N⋆

0
dN

√
r(N)

8
. (2.101)

To evaluate the integral in (2.101), it is useful to define

Neff ≡
∫ N⋆

0
dN

√
r(N)
r⋆

, (2.102)

where r⋆ is the tensor-to-scalar ratio measured in the CMB, so that

∆φ
Mpl

= Neff

√
r⋆
8

. (2.103)

In slow-roll inflation, the relation

d ln r

dN
= −

[
ns − 1 +

r

8

]
, (2.104)

combined with the observational constraints on ns − 1 and r described in Chap-
ter 1, imply that Neff ∼ N⋆ (see e.g. [253, 254]). Taking Neff ! 60, we conclude
that22

∆φ
Mpl

! 2 ×
( r

0.01

)1/2
. (2.105)

To arrive at a maximally conservative bound in single-field slow-roll inflation,
one can assume that slow-roll is valid only while the observed multipoles of the
CMB exit the horizon, corresponding to Neff ≈ 7. This leads to (cf. [252], which
used a smaller Neff because fewer multipoles had been observed in 1996)

∆φ
Mpl

! 0.25 ×
( r

0.01

)1/2
. (2.106)

22
One should not assume that simple models will approximately saturate (2.105); for
example, chaotic inflation scenarios involve displacements roughly twice as large as
required by the bound.
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied



Axions & Large field inflation

• Natural inflaton candidates as they enjoy a shift symmetry that is only 
broken by non-perturbative effects: 

• Controlled, slow-roll potential: 

• Axions with super-Planckian decay constants don’t seem to exist in 
controlled limits of string theory.

Natural Inflation
[Freese, Frieman, Olinto ’90]:
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[Banks, Dine, Fox, Gorbatov ’03]



Two Broad Classes of Models

Axion Monodromy Multiple Axions
[Silverstein, Westphal, ‘08];
[McAllister, Silverstein, Westphal, 08];
F-term axion monodromy 
(embeddable in SUGRA of string theory)
[Marchesano, GS, Uranga ’14];
[Blumenhagen, Plauschinn ’14];
[Hebecker, Kraus, Witowski, ’14];
[McAllister, Silverstein, Westphal, Wrase ’14]

Alignment 
[Kim, Nilles, Peloso, ’04]

N-flation
[Dimopoulos, Kachru,McGreevy,Wacker ’05]

Kinetic and Stueckelberg mixings:
[GS, Staessens, Ye, ’15];
[Bachlechner, Long, McAllister, ’15]; …
…



The Weak Gravity Conjecture

• The conjecture: 

“Gravity is the Weakest Force” 

• For every long range gauge field there exists a particle 
of charge q and mass m, s.t.  

Arkani-Hamed, Motl, Nicolis, Vafa ‘06

q

m
MP � “1”

See Harlow’s talk



Heuristic Argument
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+ +
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• Take a U(1) and a single family with q < m  ( WGC ) 

2m > M2 > 2q 3m > M3 > 3q Nm > MN > Nq M1 ! Q1

Extremal 
BH

BH

... ... 
• Infinitely many bound states 

MP ⌘ 1

• Postulate the existence of a state with (“mild form” of WGC)

q

m
� “1” ⌘ Q

Ext

M
Ext

M = Q

M > Q

M < Q

Figure 2. An extremal black hole can decay only if there exist particles

whose charge exceeds their mass.

The difficulties involving remnants are avoided if macroscopic black holes can evaporate

all their charge away, and so these states would not be stable. Since extremal black holes

have M = QMPl, in order for them to be able to decay into elementary particles, these

particles should have m < qMPl. Our conjecture also naturally follows from Gell-Mann’s

totalitarian principle (“everything that is not forbidden is compulsory”) because there should

not exist a large number of exactly stable objects (extremal black holes) whose stability is

not protected by any symmetries.

Another heuristic argument leading to same limit on Λ is the following. Consider the

minimally charged monopole solution in the theory. With a cutoff Λ, its mass is of order

Mmon ∼ Λ/g2 and its size is of order Rmon ∼ 1/Λ. It would be surprising for the minimally

charged monopole to already be a black hole because the values of all charges carried by

a black hole should be macroscopic (and effectively continuous); after all, a black hole is a

classical concept. Demanding that this monopole is not black yields

Mmon

M2
PlRmon

<∼ 1 ⇒ Λ <∼ gMPl (5)

2.3 Simple parametric checks

It is easy to check the conjecture in a few familiar examples. For U(1)’s coming from closed

heterotic strings compactified to four dimensions, for instance, we have

gMPl ∼ Ms , (6)

6



The Weak Gravity Conjecture

• Heuristic argument suggests ∃ a state w/                                    

• Perfectly OK for some extremal BHs to be stable [e.g., Strominger, 
Vafa] as q ∈ central charge of SUSY algebra. 

• No q>m states possible (∵ BPS bound). 
• BPS BHs are the WGC states. 
• More subtle for theories with some q ∈ central charge 

• One often invokes the remnants argument [Susskind] for the WGC 
but the situations are different (finite vs infinite mass range). 

• The WGC is a conjecture on the finiteness of the # of stable 
states that are not protected by a symmetry principle. 

• Recent work gave more (and independent) evidences for the WGC 
[Montero, GS; Soler]; [Heidenreich, Reece, Rudelius]; [Harlow] (more later).

q

m
� “1” ⌘ Q

Ext

M
Ext



WGC and Cosmology



The Weak Gravity Conjecture

• Suggested generalization to p-dimensional objects 
charged under (p+1)-forms: 

• p=-1 applies to instantons coupled to axions: 

• Seems to explain difficulties in finding  

• Is there evidence for the p=-1 version of the WGC?

Q

Tp
� “1”

e�Sinst = e�m+i�/f =) fm  “1”

f > MP

Brown, Cottrell, GS, Soler



WGC and Axions

T-dual

Type IIA Type IIB

Dp-Instanton 
(Axions)

S1S̃1

Rd�1 ⇥ S̃1

Rd Rd

D(p+1)-Particle 
(Gauge bosons)

Rd�1 ⇥ S1

• T-duality provides a subtle connection between 
instantons and particles

Brown, Cottrell, GS, Soler



WGC and Axions
• There is an upper bound of f∙m where                         

• For RR 2-form in IIB, we found: 

• We obtained similar bounds for other string axions. 

• Multiple axions mapped to multiple U(1)’s [where WGC 
was shown to imply convex hull condition                      ]             

f ·m 
p
3

2
MP

Brown, Cottrell, GS, Soler

“1”

“1”

“1”

p
N

p
N

p
N

[Cheung, Remmen]

N-flationAlignment

e�Sinst = e�m+i�/f



Axion Monodromy
• Axion is mapped to a massive gauge field. 

• In F-term axion monodromy [Marchesano, GS, Uranga], axion 
mass is generated by fluxes or compactifcations on torsion cycles.  

• Shift symmetry is spontaneously broken in the 4D EFT via: 

• Gauge symmetry ⇒ UV corrections only depend on F4 

• Multi-branched potential:

Z
d

4
x |F4|2 + |d�|2 + �F4

2⇡f�

X

n

cn
F 2n

⇤4n µ2�2
X

n

cn

✓
µ2�2

⇤4

◆n

[see also in Kaloper, Sorbo]



Axion Monodromy
• Possible tunneling to different branches of the potential: 

• Suppressing this tunneling can lead to a bound on field range 
(hence r). 

• Subtleties vs Coleman’s vacuum decay (e.g, tunneling between 
non-metastable states) Brown, Cottrell, GS, and Soler, 1607.00037 [hep-th]

Axion Monodromy

V (�) =
1

2
(ne + µ�)2

Tunneling Event: n ! n � 1

Jonathan Brown Tunneling in Axion Monodromy

Axion Monodromy

V (�) =
1

2
(ne + µ�)2

Slow Roll Inflation

Jonathan Brown Tunneling in Axion Monodromy



Evidences for the 
Weak Gravity Conjecture



Evidences for the Weak Gravity Conjecture

• Lots of work in using the WGC to constrain axion inflation [De la 
Fuente, Saraswat, Sundrum ’14];[Rudelius ’14,’15];[Montero, Uranga, Valenzuela 
’15]; [Brown, Cottrell, GS, Soler ’15] (x2); [Bachlechner, Long, McAllister ’15]; 
[Hebecker, Mangat, Rompineve, Witkowski ’15];[Junghans ’15]; [Heidenreich, 
Reece, Rudelius ’15] (x2), [Palti ’15]; [Kooner, Parameswaran, Zavala ’15]; …. 

• Loopholes were suggested, e.g., by exploiting the “mild form”. 

• But string theory seems to satisfy stronger versions of the WGC 
[Brown, Cottrell, GS, Soler ’15]; [Heidenreich, Reece, Rudelius, ’15] 

• The WGC is suggestive based on analyticity of amplitudes [Cheung, 
Remmen] and holography [Nakayama, Nomura];[Harlow];[Benjamin, Dyer, 
Fitzpatrick, Kachru] but no formal proof is given.

• [Montero, GS, Soler ‘16], took a modest step in this direction. We found 
modular invariance + charge quantization imply a version of this 
conjecture (see [Heidenreich, Reece, Rudelius ’16] for similar conclusion).



• We will explore the WGC in AdS spacetimes, in 
particular in 3D. 

• Advantages: 
‣ Behavior of gravity and gauge fields much simpler 

‣ Greatly enhanced CFT symmetry algebra 

‣ Extra constraints on CFT, in particular modular invariance 

• Main disadvantage: 
‣ d=3 so different than d>3 that any relation with higher d 

WGC is uncertain at best

The Weak Gravity Conjecture & Holography



Gravity and gauge theories 
in three dimensions



• U(1) gauge theories are special in 3d: electrostatic 
energy of charged particles is IR divergent 

• Gauge coupling runs and becomes strongly 
coupled in IR. Electric charge confines. 

• Alternatively, in the presence of a Chern-Simons 
term, the gauge field becomes massive: 

• At low energy, gauge boson behaves as scalar with mass  

• This term is also required by holography for the dual CFT 
to have non-trivial unitary representations.

µ

2

Z
F ^A

U(1) gauge theories in 3d

[Polyakov]

µ



• CS-term modifies the e.o.m: 

…and hence Gauss’ law: 

• Electric charge can be measured at infinity: 

• Compactness of U(1) gauge group implies 
• Charge quantization:                  , quantized CS level  

• Aharanov-Bohm exp. measures charge mod N. Full U(1) 
charge is nevertheless conserved.

Z

S1

⇤F = Qe + µ

Z

S1

A

d ⇤ F = ⇤je + µF

Qe = �µ

Z

S1
1

A

U(1) gauge theories in 3d

µ =
Ng2

2⇡
N 2 Z



• Gravity is also special (topological) in 3d: metric 
has no propagating degrees of freedom 

• Nevertheless, black hole solutions exist, albeit only 
in AdS spacetime 

‣ Finite horizon at

U(1) gauge theories in 3d

[Bañados, Teitelboim, Zanelli]
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• 3d no-hair theorem implies BHs cannot source 
electric field 

• BTZ metric has a non-contractible one-cycle on 
which a flat connection can be turned: 

• Although charged BHs exist: 
‣ No backreaction on the metric (even after including higher 

derivative corrections) 
‣ No apparent notion of extremality 
‣ No straightforward connection to WGC in d>3

Qe = �µ

Z

S1

A

U(1) gauge theories in 3d



• Weakly coupled           is dual to a            at large 
central charge 

• Bulk U(1) is dual to (holomorphic) CFT current j(z) 
at level N>0: 

‣ j_  is proportional to Q (bulk electric charge)  

‣ [L_0,j_0]=0,       electric charge is exactly conserved 

‣ N>0 required for non-trivial unitary representation

c =
3`

2G

[jm, jn] = N�m+n,0 [Lm, jp] = �p jm+p

The CFT perspective

AdS3 CFT2

j0

[L0, j0] = 0 )



• In the presence of U(1) currents, the CFT stress 
energy tensor admits a Sugawara decomposition 

• The Virasoro generators also split L_m=L’_m       
The unitarity bound arises 

• Eigenvalues     of       measure the total energy of the bulk 

• Same story holds for anti-holomorphic part        when N < 0

L0 = L0
0 + LS

0 =) L0 � LS
0 � Q2

2N

The CFT perspective

Lm = L0
m + LS

m

h L0

T̃

An important property of theories with extended chiral algebras is the Sugawara

construction [61,62]. The stress-energy tensor T (z) of the theory decomposes as

T (z) = T 0(z) + T S(z), T S(z) =
1

2
: jj(z) :, (4.3)

where T 0(z) has vanishing OPE with the currents. The Virasoro generators similarly

split as Lm = L0
m + LS

m, where the Sugawara generators LS
m satisfy a Virasoro algebra

with central charge cS equal to the rank of the bulk gauge group (if abelian). The

primed generators L0
m satisfy an independent Virasoro algebra with central charge

c� cS, where c is the central charge of the full Virasoro generators Lm. Clearly, c > cS

in a unitary theory. This fact has a nice interpretation in terms of the dual AdS: The

central charge essentially measures the strength of gravity, which becomes weaker as we

increase c. cS is the number of massless U(1) gauge fields present in the theory. Thus,

c > cS is just the familiar statement that light fields tend to renormalize Newton’s

constant, making gravity weaker.

An important constraint comes from the split L0 = L0
0+LS

0 . In a unitary represen-

tation of the conformal algebra, L0 is positive definite [61,62], and so is L0
0. Therefore,

hL0i � hLS
0 i. This last operator in turn satisfies

LS
0 � Q2

2N
, j0| i = Q| i. (4.4)

This is a unitarity bound which shows that the eigenvalues of L0 cannot become arbi-

trarily small for a given charge.

The conformal dimension� of an operator of weights (h, h̃) is simply� = h+h̃� c+c̃
24

.

We will denote by �0 = � c+c̃
24

the conformal dimension of the vacuum. The AdS/CFT

correspondence generically relates the conformal dimension � to the energy of the bulk

configuration. As a particular simple example, the ground state of a scalar field of mass

m in AdS coupled only to gravity is dual to an operator of conformal dimension �,

related to its mass by [63]

m2l2 = (���0)(���0 � 2) (4.5)

Thus, for large mass, m ⇡ �/l.

4.2 An extremality bound

The above considerations impact the computation of black hole entropy via evaluation

of the bulk action in a significant way. The Sugawara contribution to the stress-

energy tensor is also visible in the bulk. As discussed in appendix A, it is necessary to

12



• Both       and        can be directly obtained from the bulk 
for BTZ charged BH, given the explicit solution: 

• Hence, BHs satisfy from the CFT perspective the bound 

• Can regard this as 3d ``extremality bound”. A WGC 
could postulate the existence of charged states 

‣ Our goal is to find such “super-extremal” states

The CFT perspective

L0
0 LS

0

h0
M,J =

c

24
+

1

2
(M`+ J) , hS =

Q2

2N

hBH >
c

24
+

Q2

2N

hBH > hWGC � hUnit () c

24
+

Q2

2N
> hWGC � Q2

2N



Modular invariance and 
“super-extremal” states



• Take CFT partition function with chem. potential 

‣ Charge quantization implies 

• On the other hand, modular invariance implies: 

• Together, these mean  

Z(⌧, z) = Tr
⇣
qL0� c

24 q̄L̃0� c̃
24 e2⇡izQ

⌘

Z(⌧ 0, z0) = exp

✓
i⇡N

z2

c⌧ + d

◆
Z(⌧, z) , ⌧ ! a⌧ + b

c⌧ + d
, z ! z

c⌧ + d

Z(⌧, 0) = exp (�i⇡N⌧)Z(⌧, ⌧) = Tr

⇣
qL0� c

24+Q+N
2 q̄L̃0� c̃

24

⌘

Modular invariance & super-extremal states

Z(⌧, z) = Z(⌧, z + 1)



• Conclusion: Modular invariance and charge 
quantization imply invariance under spectral flow 

• Acting k times on the vacuum                              we 
infer the existence of states with 

• These states saturate the unitarity bound and lie 
below the BH threshold.  

‣ 3d WGC satisfied in the sector of charges         

L0 ! L0 +Q+
N

2
, Q ! Q+N, L̃0 ! L̃0

Q = kN and L0 = k2
N

2
=

Q2

2N
= hUnit < hBH

Modular invariance & super-extremal states

Q = N · Z

(L0 = L̃0 = Q = 0)



• Remarks: Usual WGC heuristics do not apply in 
AdS in three dimensions: 
‣ Gauge field is massive due to CS term. There is no tunable 

gauge coupling and no obvious              limit. 
‣ Large BHs (larger than         ) do not evaporate, no trouble 

with remnants 
‣ Small BHs are subject to large quantum corrections 

• However, modular invariance + charge quantization 
imply a certain version of WGC for 
‣ Sub-lattice WGC

Modular invariance & super-extremal states

g ! 0

`AdS

Q = N · Z



• Can modular invariance test WGC for 0<Q<N? 

‣ Partition function splits into        sectors 

‣ In the low T limit (             ),             gives the conformal 
weight of the lightest state with charge Q mod N 

‣ Sm - WGC:  

• Modular invariance and spectral flow can be used 
to constrain the spectrum of       - charged states 

‣ Modular bootstrap  

• These are however not sufficient to prove       -WGC 

The       chargeZn

Z(⌧) =
N�1X

Q=0

ZQ(⌧)ZN

ZQ(⌧)

ZN

⌧2 ! 1

ZN

[Benjamin, Dyer, Fitzpartrick, Kachru]

ZN

ZQ > e�⌧2
Q2

N , 8Q 6= 0 mod N
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Conclusions

• Motivated by gravity waves & large field inflation, we 
have revisited the WGC and the “Swampland” proposal. 

• We have formulated the WGC for (a large class of) 
axions which can be dualized to U(1) gauge fields. 

• Constraints on multiple axions in terms of convex hull 
(bound on the “diameter” of axion space): 

• KNP, N-flation, kinetic mixing,… 

• String theory examples suggest stronger versions of the 
WGC.



Conclusions

• Evidence of the WGC in AdS3/CFT2. Key ingredients are 
modular invariance & compactness of Abelian group. 

• Exciting interface between Black holes, Inflation & 
String Theory.



Conclusions

• Evidence of the WGC in AdS3/CFT2. Key ingredients are 
modular invariance & compactness of Abelian group. 

• Exciting interface between Black holes, Inflation & 
String Theory.

谢谢！

THANKS


