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‘Infrared’ divergences in string theory

String theory is free from ultraviolet divergences but
suffers from the usual infrared divergences

– associated with degenerate Riemann surfaces
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In the degeneration limit the string theory amplitudes
resemble field theory amplitudes in Schwinger
parameter representation

(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

e−s: size of the degenerating cycle

s→∞ in the degeneration limit.

Sources of divergence in string theory can be
understood from the divergences in field theory
amplitudes in large s limit
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(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

– has two types of divergence

1. For k2 + m2 < 0, l.h.s. is finite but r.h.s. diverges

– can be dealt with in quantum field theory by
working directly with l.h.s.
– in conventional string perturbation theory these
divergences have to be circumvented via ‘analytic
continuation’ D’Hoker, Phong; Berera; Witten; · · ·
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(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

2. For (k2 + m2) = 0, l.h.s. and r.h.s. both diverge.

– present in quantum field theories e.g. in external
state mass renormalization and massless tadpole
diagrams

– have to be dealt with using renormalized mass and
correct vacuum.

In standard superstring perturbation theory these
divergences have no remedy. 5



Superstring field theory is a quantum field theory
whose amplitudes, computed with Feynman
diagrams, have the following properties:

1. They agree with standard superstring amplitudes
when the latter are finite

2. They agree with analytic continuation of standard
superstring amplitudes when the latter are finite
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3. They formally agree with standard superstring
amplitudes when the latter have genuine divergences,
but · · ·

· · · in superstring field theory we can deal with these
divergences using standard field theory techniques
like mass renormalization and shift of vacuum.

Such a field theory can be constructed for heterotic,
type IIA and type IIB string theories AS

– follows closely the construction of closed bosonic
SFT with some twists Zwiebach
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Structure of the action

Two sets of string fields, ψ and φ

Each is an infinite component field

Action takes the form

S =

[
−1

2
(φ,QXφ) + (φ,Qψ) + f(ψ)

]
Q, X: commuting linear operators, Q2 = 0

(,): Appropriate Lorentz invariant inner product

f(ψ): a functional of ψ describing interaction term. 8



Some details (for heterotic string)

S =

[
−1

2
(φ,QXφ) + (φ,Qψ) + f(ψ)

]
ψ has picture numbers (−1,−1/2) in (NS,R) sectors

φ has picture numbers (−1,−3/2) in (NS,R) sector

Q: BRST operator

X: (Identity, zero mode of PCO) in the (NS, R) sectors.

f(ψ): given by an integral over subspace of moduli space of
Riemann surfaces

Integrand: correlation function of ψ states, PCO’s, ghosts etc.

The subspace never includes degenerate Riemann surfaces. 9



S =

[
−1

2
(φ,Q Xφ) + (φ,Qψ) + f(ψ)

]
Equations of motion:

Q(ψ − Xφ) = 0

Qφ + f′(ψ) = 0

first + X × second equation gives

Qψ + X f′(ψ) = 0

ψ describes interacting fields

Rest of the independent degrees of freedom describe
decoupled free fields.
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This action has infinite dimensional gauge invariance

– can be quantized using Batalin-Vilkovisky formalism

1. Gauge fix

2. Derive Feynman rules

3. Compute amplitudes

Amplitudes of ψ give the scattering amplitudes with
desired properties.

Rest of the degrees of freedom decouple and will be
irrelevant for our analysis.
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The tree level propagators have standard form in the
‘Siegel gauge’

(L0 + L̄0)−1 X b0 b̄0 δL0,L̄0

In momentum space

(k2 + M2)−1 × polynomial in momentum

The polynomial comes from matrix element of X b0 b̄0.
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k1 k2

k3kn · · ·

Vertices are accompanied by a suppression factor of

exp

[
−A

2

∑
i

(k2
i + m2

i )

]
A: a positive constant that can be made large by a
non-linear field redefinition (adding stubs). Hata, Zwiebach

This makes

– momentum integrals UV finite (almost)

– sum over intermediate states converge
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Momentum dependence of vertex includes

exp

[
−A

2

∑
i

(k2
i + m2

i )

]
= exp

[
−A

2

∑
i

(~k
2
i + m2

i ) +
A
2

(k0
i )2

]

Integration over ~ki converges for large ~ki, but
integration over k0

i diverges at large k0
i .

The spatial components of loop momenta can be
integrated along the real axis, but we have to treat
integration over loop energies more carefully.
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Resolution: Need to have the ends of loop energy
integrals approach ±i∞.

In the interior the contour has to be deformed away
from the imaginary axis to avoid poles from the
propagators.

Complex k0-plane

We shall now describe in detail how to choose the
loop energy integration contour.
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General procedure: Pius, A.S.

1. Multiply all external energies by a complex number
u.

2. For u=i, all external energies are imaginary, and we
can take all loop energy contours to lie along the
imaginary axis without encountering any singularity.

3. Now deform u to 1 along the first quadrant.

4. If some pole of a propagator approaches the loop
energy integration contours, deform the contours
away from the poles, keeping its ends at ±i∞.
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Result 1: Such deformations are always possible as
long as u lies in the first quadrant

– the loop energy contours do not get pinched by
poles from two sides.

Result 2: The amplitudes computed this way satisfy
Cutkosky cutting rules

– relates T− T† to T†T S = 1 - i T

– proved by using contour deformation in complex
loop energy plane 17



This is a step towards proof of unitarity but not a
complete proof

In T† T = T†|n〉〈n|T, the sum over intermediate states
runs over all states in Siegel gauge.

Desired result: Only physical states should
contribute to the sum.

This is shown using the quantum Ward identities of
superstring field theory A.S.

– requires cancellation between matter and ghost
loops
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The proof of unitarity takes into account

1. Mass and wave-function renormalization effects
and lifting of degeneracy

2. The fact that some (most) of the string states
become unstable under quantum corrections.

3. The possible shift in the vacuum due to quantum
effects.

It does not take into account the infrared divergences
from soft particles arising in D ≤ 4.

(String field theory version of Kinoshita, Lee,
Nauenberg theorem has not yet been proven.)
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An example:

Consider two fields, one of mass M and another of
mass m, with M>2m.

Consider one loop mass renormalization of the heavy
particle.

p p

k

p-k

Thick line: heavy particle Thin line: light particle.
20



p p

k

p-k

δM2 = i
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 B(k)

B(k): a polynomial in momentum encoding additional
contribution to the vertices and / or propagators.

We shall work in ~p = 0 frame, and take p0 → M limit
from the first quadrant.
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δM2 = i
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 B(k)

Poles in the k0 plane (for ~p = 0):

Q1 ≡
√
~k

2
+ m2, Q2 ≡ −

√
~k

2
+ m2,

Q3 ≡ p0 +

√
~k

2
+ m2, Q4 ≡ p0 −

√
~k

2
+ m2

For p0 imaginary, take k0 contour along imaginary
axis.

Q1,Q3 to the right and Q2,Q4 to the left of the
imaginary axis.
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Q1 ≡
√
~k

2
+ m2, Q2 ≡ −

√
~k

2
+ m2,

Q3 ≡ p0 +

√
~k

2
+ m2, Q4 ≡ p0 −

√
~k

2
+ m2

As p0 approaches real axis, the poles approach the real axis.

Two situations depending on the value of ~k.

x xx xQ2 Q1Q4 Q3
x x x xQ2 Q1 Q4 Q3

Note: Q1,Q3 to the right and Q2,Q4 to the left of the contour in
both diagrams.
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x xx xQ2 Q1Q4 Q3
x x x xQ2 Q1 Q4 Q3

Complex conjugate contours giving (δM2)∗

x xx xQ2 Q1Q4 Q3
x x x xQ2 Q1 Q4 Q3

– can be deformed to each other without picking any
residue unless Q4 → Q1 putting both lines on-shell.

– residue given by Cutkosky rules. 24



The cut diagrams in string field theory will have some
unwanted terms

p p

k

p-k

Q|s〉 〈s′|

|r〉 〈r′|Q
p p

k

p-k

|s〉 〈s′|Q

Q|r〉 〈r′|

These two diagrams cancel using Ward identity.

All order proof of unitarity involves generalization of
this type of analysis

– takes into account quantum modification of the
BRST operator Q computed from 1PI effective action.
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String motivated approach: Evaluate the original integral using
Schwinger parametrization

exp[−A(k2 + m2)](k2 + m2)−1 =

∫ ∞
A

dt1 exp[−t1(k2 + m2)]

exp[−A((p− k)2 + m2)]((p− k)2 + m2)−1 =

∫ ∞
A

dt2 exp[−t2((p− k)2 + m2)]

For constant B, after doing momentum integrals (formally)

δM2 = −B (4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
– diverges from the upper end for M > 2m.

– can be traced to the impossibility of choosing energy
integration contour keeping Re(k2 + m2)>0, Re((p− k)2 + m2)>0.
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i B
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 finite

‘=’ −B (4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
divergent

More generally for a polynomial B, we have a polynomial P s.t.

i
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 B(k)

‘=’ −(4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
P(1/(t1 + t2), t2/(t1 + t2))
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Such divergences arise in actual computation of one
loop two point functions in heterotic and type II string
theories.

Using these ‘identities’ we can convert these
divergent expressions into finite expressions

– have both real and imaginary parts consistent with
unitarity.
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An example

One loop mass renormalization of the lowest massive
state on the leading Regge trajectory in the heterotic
string theory

Need to compute torus two point function of on-shell
states
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On shell two point function gives

δM2 = − 1
32π

M2 g2
∫

d2τ

∫
d2z F(z, z̄, τ, τ̄) ,

F(z, z̄, τ, τ̄) ≡

{∑
ν

ϑν(0)16

}
(η(τ))−18(η(τ))−6(ϑ′1(0))−4

(
ϑ1(z)ϑ1(z)

)2

(ϑ′1(z)

ϑ1(z)

)2

−
ϑ′′1 (z)

ϑ1(z)
− π

τ2

2

exp[−4π z2
2/τ2] (τ2)−5 ,

z = z1 + i z2 ∈ torus, τ = τ1 + iτ2 ∈ fundamental region

ϑ1, · · ·ϑ4: Jacobi theta functions η: Dedekind function
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For large z2 and τ2 − z2, F has a growing part

2 (2π)−4
(

32π4 − 32
π3

τ2
+ 512

π2

τ2
2

)
exp[4πz2 − 4πz2

2/τ2] τ−5
2

⇒ divergent integral.

Divergent part after using t1 = πz2, t2 = π(τ2 − z2)

J = −2−3π2 M2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−5(
1− 1

(t1 + t2)
+ 16

1
(t1 + t2)2

)
exp

[
4

t1t2

t1 + t2

]

A: arbitrary constant

J is divergent, but the integral matches the one we analyzed
before for field theory with m=0, M=2
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Strategy (can be justified using string field theory):

Replace J by momentum space integral.

J = i (2π)7M2g2
∫

d10k
(2π)10 exp[−Ak2 − A(p− k)2]

(k2)−1 {(p− k)2}−1 {1− 2 (k1)2 + 64 (k1)2 (k2)2}

– finite integral once we choose the integration
contour for energy integral as in the field theory
example

Final result gives finite real and imaginary parts in
accordance with unitarity.
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Summary

Covariant superstring field theory gives a Lorentz
invariant, ultraviolet finite and unitary theory.

Divergences associated with mass renormalization
and shift of vacuum can be dealt with as in
conventional quantum field theories.

It can also provide useful alternative to analytic
continuation that is often needed in conventional
superstring perturbation theory to make sense of
divergent results.
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