Rényi Entropy and Spectral Geometry

Alexander Patrushev in collaboration with Dmitri Fursaev

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research

Strings 2014

Entanglement and Rényi entropy

• Take a system H with ρ and divide it into two subsystem H_A and H_B separated by a boundary (not necessarily physical)

4

$$S_n = \frac{1}{1-n} \ln tr \rho_A^n \tag{1}$$

 ρ_A with integrated out DOF's of B

- We measure correlation between A and B, measured on the entangling surface Σ
- Gentle coarse-graining ⇒ Universality
- ullet Information theory (e.g. $n o \infty$ randomness extractors)

Figure: String theory traced away

People working on the border are most vulnerable.

A replica method is based on calculation of the traces of density matrix powers $\operatorname{Tr}_R \hat{\rho}_R^n$. Hard!

Direct calculations using regularized metric Maldacena, Lewkowicz;
 Fursaev, A.P., Solodukhin

$$ds^{2} = f(r,b)dr^{2} + r^{2}d\tau^{2} + [h_{ij} + r^{n}\cos(\tau)K_{ij} + r^{n}\sin(\tau)K_{ij}]dx^{i}dx^{j}$$
(2)
$$ds^{2} = f(r,n)dr^{2} + r^{2}d\tau^{2} + [h_{ii} + r\cos(\tau)K_{ii} + r\sin(\tau)K_{ii}]dx^{i}dx^{j}$$
(3)

give the Weyl tensor up to $O(n-1) \Rightarrow not good for Renyi entropy$

- Conformal transformation maps entanglement entropy on a flat space-time to thermal entropy on $S^1 \times H^3$ Casini, Huerta, Myers (Good for Renyi entropy for a spherical entangling surface, possible corrections Rosenhaus, Smolkin)
- Numerical methods
- Holography?

General expression for the logarithmic term in the Rényi entropy in (3+1)-dimensional CFT Fursaev

$$S_{\Sigma}^{n} = \frac{f_{a}(n)}{180} \int_{\Sigma} E_{2} + \frac{f_{b}(n)}{240\pi} \int_{\Sigma} \left(\text{Tr} k^{2} - \frac{1}{2} k^{2} \right) - \frac{f_{c}(n)}{240\pi} \int_{\Sigma} W^{ab}_{ab} \log \epsilon , \quad (4)$$

where $f_{a,b,c}(n)$ only depend on nNumerics $f_b(q) = f_c(q)$ Lee, McGough, Safdi Rényi entropy for excited states Takayanagi et al

$$Tr\rho^n = \int \mathcal{D}\phi \exp\left(-I_n[\phi, J]\right)$$
 (5)

$$S_n(J) = \frac{1}{1 - n} (\ln Z_n - n \ln Z_1)$$
 (6)

Finite entropy

$$\Delta S_n = \frac{1}{2(n-1)} \int_{\mathcal{M}_{\setminus}} J_n(G_n - (n-1)G_1) J_n \tag{7}$$

 G_n is a Green function for \mathcal{M}_n

$$G_{\alpha} = -\int ds K_{\alpha}(s)$$
 (8)

Sommerfeld formula

$$K_{\alpha}(t) = \frac{1}{2\alpha} \int_{B} \cot \frac{\pi}{\alpha} (z - t) K\left(x(z), x'(0)|t\right) dz \tag{9}$$

Generalization for squashed geometries.

Generalization of the Sommerfeld formula for squashed geometries

$$K_{\alpha}(t) = \frac{1}{2\alpha} \int_{B} \cot \frac{\pi}{\alpha} (w - \Delta \tau) F(x(z), x'(0)|t) dw, \qquad (10)$$

where $F(x, x', \omega | t)$ is a new kernel

$$F(x, x', \omega|t) = K(x(\omega), x'(\omega)|t)e^{-s(x, x', \omega|t)/(4t)}(1 + A(x, x', \omega|t)) \quad (11)$$

with a consistency condition

$$F(x, x', \omega|t)|_{\omega = \tau - \tau'} = K(x(\omega), x'(\omega)|t)|_{\alpha = 2\pi}$$
(12)

Heat kernel coefficient a4 gives a logarithmic term

$$K_{\beta}(t) \sim t^{-1}a_2 + a_4 + \dots (t - dependent)$$
 (13)

$$a_4 \to a(\gamma_n) f_a(n) + b(\gamma_n) f_b(n) + c(\gamma_n) f_c(n), \tag{14}$$

$$\gamma_n = \frac{2\pi}{\alpha n}$$

Figure: Thank you for your attention. Your Questions, Please.