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The idea is that by adding a Q-exact term to the action it is possible to
reduce the path integral to a finite dimensional integral:

Localisation:  Zpy = [ Dype™5 = [ DWoe S0l Z; 50, [Wo]
Wy: field configurations satisfying localising (saddle point) equations

with a clever localisation scheme, Wy is a finite dimensional set
Z1joop[Wo] is due to the quadratic fluctuation around Wy

= useful to study holography

= connect to exactly solvable models such as 2d CFTs and TqFTs.



The S* localisation of 4d N/ = 2 theories [Pestun], has led to the AGT
correspondence: [Alday-Gaiotto-Tachikawa],[Wyllard]

2 . .
[ZS‘* [Tend = [103] Z Zutoop | Zinse| = [ € C |F2r(Q)? = (IT; va,->%;??““e]

generalised N' = 2 S-duality & CFT modular invariance



The S* localisation of 4d N/ = 2 theories [Pestun], has led to the AGT
correspondence: [Alday-Gaiotto-Tachikawa],[Wyllard]

2 . .
[254 [E,n] = f[da] Zei Zijoop ‘Zinst = fda Cc---C |]—‘g,-(o‘2 — <H7 Vai>IE§nuvme]

generalised N' = 2 S-duality & CFT modular invariance

It was also proposed that simple surface operators (codim-2 defects)
correspond to degenerate primaries [Alday-Gaiotto-Gukov-Tachikawa-Verlinde].



The S* localisation of 4d N/ = 2 theories [Pestun], has led to the AGT
correspondence: [Alday-Gaiotto-Tachikawa],[Wyllard]

2 . .
= [da C---C|F(Q)]? = (I} Vai>%;?;1v1116]

Z inst

[254 [7—g,n] = f[da] Zy leoop

generalised N' = 2 S-duality & CFT modular invariance
It was also proposed that simple surface operators (codim-2 defects)
correspond to degenerate primaries [Alday-Gaiotto-Gukov-Tachikawa-Verlinde].

The S? Higgs branch localisation of 2d A/ = (2,2) theories
[Doroud-Gomis-LeFloch-Lee],[Benini-Cremonesi] has allowed to check that:

N2 ' )
Z\(/) ~ <Va4 Va3(1) Vfb/z(z) Val>%;iuwlle]

S 2 (i) ~(i
[ZSZQED = Zi Gc(/)Gl(lgop

flop symmetry < crossing symmetry




The S* localisation of 4d N/ = 2 theories [Pestun], has led to the AGT
correspondence: [Alday-Gaiotto-Tachikawa],[Wyllard]

Z inst

2 . .
[254[7;,n] = [da] Zut Zitoop = [da C---C|Fo(Q)P = (1" va,->%;?:‘““e]

generalised N' = 2 S-duality & CFT modular invariance

It was also proposed that simple surface operators (codim-2 defects)
correspond to degenerate primaries [Alday-Gaiotto-Gukov-Tachikawa-Verlinde].

The S? Higgs branch localisation of 2d A/ = (2,2) theories
[Doroud-Gomis-LeFloch-Lee],[Benini-Cremonesi] has allowed to check that:

N2 ' )
Z\(/) ~ <Va4 Va3(1) Vfb/z(z) Val>%(1)311v111e]

S 2 (i) ~(i
[ZSZQED = Zi Gc(/)Gl(lgop

flop symmetry < crossing symmetry

Gauge theory and CFT are constrained by the same bootstrap equations!



The S* localisation of 4d A/ = 2 theories [Pestun], has led to the AGT
correspondence: [Alday-Gaiotto-Tachikawa],[Wyllard]

Z inst

2 . .
[254[7;,n] = [da] Zut Zitoop = [da C---C|Fo(Q)P = (1" va,->%;?:‘““e]

generalised N' = 2 S-duality & CFT modular invariance

It was also proposed that simple surface operators (codim-2 defects)
correspond to degenerate primaries [Alday-Gaiotto-Gukov-Tachikawa-Verlinde].

The S? Higgs branch localisation of 2d A/ = (2,2) theories
[Doroud-Gomis-LeFloch-Lee],[Benini-Cremonesi] has allowed to check that:
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flop symmetry < crossing symmetry

Gauge theory and CFT are constrained by the same bootstrap equations!

Today | will argue that a similar story seems to hold in 3d and 5d:

» 3d partition functions < degenerate g-CFT correlators
» bd partition functions < non-degenerate g-CFT correlators.



The starting point is the observation that partition functions of N' = 2
theories on 52,52 x S* can be expressed in terms of holomorphic blocks:

21835 x 5= 2.0 = 3 B0,
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The starting point is the observation that partition functions of N' = 2
theories on 52,52 x S* can be expressed in terms of holomorphic blocks:

21835 x 5= 2.0 = 3 B0,

[S.P.],[Beem-Dimofte-S.P.],[Hwang-Kim-Park], [Taki]

“like” S2, 5% x S! are obtained by gluing solid tori with S, id € SL(2,Z).

Holomorphic blocks B*(x, q) are solid tori partition functions which

form a complete basis of solutions to certain difference operators
transform non-trivially under symmetries of partition functions

For N = 2 theories from M5 on a 3-manifold M, B%(x, q) are
analytically continued Chern-Simons wavefunctions.

On the basis of | will argue that there is a g-CFT structure.



Block-factorisation of 3d partition functions
g-CFT correlators via the bootstrap approach
3d and 5d partition functions as g-CFT correlators

Conclusions and open issues
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Flop Symmetry exchanges phase [<>phase II: £ <> —&, m; <> —



Higgs-branch-like factorised form:

I |IeTe q)Hj

[S.P.],[Beem-Dimofte-S.P.]

SQED N, i
[ZSQ Z ' Gc/)Glloop ‘Z\(/)

G, G evaluated on SUSY vacua of the effective (2,2) theory:

cl » “1lloop

B 1’1[ sp(mj — m; + iQ/2)

G = e2miem Gl . 5
sb(mk —m; — IQ/Z)

cl ’ lloop —
-k

g-deformed vortices on R? x S*:

2= S o) (5700

n_/quJ ’"

S-pairing: Hf(x; q)H?s = f(x; q)f(X; §)

27wbm; 27rbm,

Xi=¢ , Yi=¢€

% = e27rm,-/b’ )7’_ _ 627rm,/b7 5 eQTr&/b’
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N =2 SQED on 5% x S!
Consider the A/ = 2 SQED with fugacities:

(i, 1), i=1,-- N, flavor U(1)Vr,

(&, 1), i=1,--- N, (anti) — flavor  U(1)Mr,
(w, n), topological U(1),

(t,s), gauged U(1).

The Coulomb branch localisation yields:
N N¢ 1
2% = [ d G Guop = > / szt [ s+0) [ (=51
J=1 k=1

with

_ (12 e U —m/2)
x(¢;m) = (q C H (1= q'Cq—m/?)

[Kim],[Imamura-Yokoyamal, [ Kapustin-Willet],[Dimofte-Gukov-Gaiotto]

Flop Symmetry exchanges phase /<sphase Il: w <+ w™!, n+ —n,

-1
¢ & o=l



Higgs-branch-like factorised form:

N
i

——

[Beem-Dimofte-S.P.],[Dimofte-Gaitto-Gukov],[Hwang-Kim-Park]

12
2, =%

N,
[ZZQED = Z ' G( )Glloop

> G, )G are evaluated on SUSY vacua:

1loop

. N
G(’) :W_r’(ﬁbfl) ) 1Ioop HX ¢J ) '_ri)HX(¢i§;lvrf_lk)v
k=1

cl

» g-deformed vortices on R? x S':

}’kX ; i S oo
2y —ZH D= 0l L (5.12)
J

; n

2

> id-pairing:

X = 6iq"?, %=, yi=&q"?, yi=¢&1q"?,



FLOP SYMMETRY is rather trivial on the Coulomb branch; but on the
Higgs branch it implies non-trivial relations between blocks (analytic
continuation z — z ! from phases / to phase //):
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FLOP SYMMETRY is rather trivial on the Coulomb branch; but on the
Higgs branch it implies non-trivial relations between blocks (analytic
continuation z — z ! from phases / to phase //):

Ny )
NI ~(0),] bW,
Zild,S = Z Gc(/) Gl(/c))op 'Zi/) id S -
& 01~ | ()01 ]2
:ZGCI” Gl;o;)p ‘Z\/l7 HidS:ZiZ’S

this structure is indeed reminiscent of 2d CFT correlators:

gauge theory flop symmetry < crossing symmetry

g-deformed hypers as chiral blocks < g-deformation of Virasoro
+numerous “5d-AGT" results relating 5d instantons to g-Virasoro
blocks. [Awata-Yamada],[many many others]



g-deformed Virasoro algebra Virg ;

Virg,+ has two complex parameters g, t and generators T, with n € Z
[Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugail,[Frenkel-Reshetikhin], [Jimbo-Miwa)
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g-deformed Virasoro algebra Virg ;

Virg,+ has two complex parameters g, t and generators T, with n € Z
[Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugail,[Frenkel-Reshetikhin], [Jimbo-Miwa)

400
[To. Twl = = f(Toi Torss — Tt Totr)
=1
(1-q@-t") . .,
*T((Q/f) —(q/t)"")om+no0
where f(z) = /5 fiz! = exp [ 335 LTI

2 . .
» Fort =g % and g — 1, Vir,, reduces to Virasoro.

» chiral blocks with degenerate primaries (singular states in the Verma
module) satisfy difference equations.
[Awata-Kubo-Morita-Odake-Shiraishi], [Awata-Yamadal),[Schiappa-Wyllard]



g-deformed Bootstrap Approach:

We will construct g-correlators using the conformal bootstrap approach:

3-point function is derived exploiting symmetries, without using the
Lagra ngia Nn. [Belavin-Polyakov-Zamolodchikov],[Teschner]



g-deformed Bootstrap Approach:

We will construct g-correlators using the conformal bootstrap approach:

3-point function is derived exploiting symmetries, without using the
Lagra ngia Nn. [Belavin-Polyakov-Zamolodchikov],[Teschner]

Consider 4-point function with a degenerate insertion
(Vay (00) Vs (1) Vo, (2, 2) Ve, (0)) ~ G(2,2)
take V,,(z, Z) to have a null state at level 2, then
D(A,B; C;q,2z)G(z,z) =0, D(A,B; C;§;,2)G(z,2) =0,
where D(A, B; C; g; z) is the g-hypergeometric operator.

G(z,Z) is a bilinear combination of solutions of the g-hypergeometric eq.



(6 0@Cclz7hq)
2 7 0(qC 1 9)0(qz 1 q)
For g — 1 becomes the undeformed s-channel basis.

1) = 201(A, B; C: 2), 2®1(gACT!, gBCT g?C Y 2)



1) = ,01(A,B; C;z), I =
1 i ) 2 0(qC L q)0(az i q)

For g — 1 becomes the undeformed s-channel basis.

s-channel correlator:

o,

SN

1 i
(s) o,

% B!

K1)

n

2
=

K,-J(-s) is diagonal with elements related to 3-point functions

Ki(I'S) = C(Oé4,0[3,ﬁl§5)) C(Qofﬂ,(S), *b0/2,041)7 B/( ) = alj:

2

*

For the moment assume generic pairing H( )

b
2 )

2c—1,-1.
NaC 2774 g (gac,qBC 2C Y 2)

i=1,2



(u) 0(qgA~1z71; q) 1. ~1. 2_-1

1) = ®1(A, gAC~L; gAB~ 1 ,
1 0(A—T q)(az—11 q) 2 (A, q q g’z )
(u) 0(gB~1z71%; q) 1. 1. 2_-1

L, = d1(B,gBC™*;gBA™;

b 0(B—1;q)0(q7—1;q) ° 1(B,q q g’z )

For g — 1 limit becomes the undeformed u-channel basis.




(u) 0(qgA~1z71; q) 1. ~1. 2_-1

1) = ®1(A, gAC~L; gAB~ 1 ,
1 0(A—T q)(az—11 q) 2 (A, q q g’z )
(u) 0(gB~1z71%; q) 1. 1. 2_-1

L, = d1(B,gBC™*;gBA™;

b 0(B—1;q)0(q7—1;q) ° 1(B,q q g’z )

For g — 1 limit becomes the undeformed u-channel basis.

u-channel correlator:

ihj=1
2 a, a,
_ u) || ()" _
=2 KO =2
i=1 i &
a, o,

Kiﬁ-u) is diagonal with elements related to 3-point functions

bo

K = C(an, a3, M) C(Q—B", —bo/2,as), BY = aut—=, i=1,2

2



impose crossing symmetry

o4 Bl oy &4
i

2 2
11(5) 12(5) — Kl(if) I(U)

2
K )

*

[Kf?

+ Ky
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impose crossing symmetry

o, Bl o, o, Oy
2 2 2
(0] w2 ] = w2 [+ 90 j
analytic continuation /(° ZJ 1 ,JJ i ZJ 1 ,JJ *) yields:

2 OFY u
[ k,I=1 K/E/)MkiM/j = K/J(' )]

Solving these equations we can determine 3-point functions. But we need

2
to specify the pairing H( o )H — use 3d gauge theory pairings!



id-pairing g-CFT

Now assume that chiral blocks are paired as:

Hf(x; q)Hfd = f(x; q9)f(%;§) .
with:

—BX

x=eX, g=e* G=gq!



id-pairing g-CFT
Now assume that chiral blocks are paired as:

Hf(x; q)HZ = f(x; q9)f(%;§) .

with:

x=eX, x=ePX G=g

The bootstrap equations are solved by:

3

Cal ) = : e
id\ 3, A2, A1) = T3(2a1 — Qo) 1 T8 (2ar — 20)

where 2a1 = a3 + az + a3, Qo = by + 1/by and

[e'e]

o) oc T sinh [g (X bt %)} o E <*X +(m + Dby + ("zbj 1))]

ny,np=0



(SQED Nf =2 on S? x S! & id-pairing 4-point degenerate correlatorj

o, o
2 i
id o Z :
L By [H

Z,-ZQED Z G( i), IG

cl lloop

’z()’

Z




[SQED Nf =2 on S? x S! & id-pairing 4-point degenerate correlatorj

@,
1
1
1
|
1

Z |

Z

SQED I |
Z Q ZG() 1/oop ’2()

dictionary:
ZCFT ™~ Zgauge; 4 — eﬂ/bo y Qo= _b0/2

(o) _@_1—1 =
5

o0 S45-0
a1:%+’122a a3:%_11+2 =% oy = 4

where ¢; = /P ®i, ¢ = eP=i



(SQED Nf =2 on S? x S! & id-pairing 4-point degenerate correlatorj

o 3

10

’Z()IH K(

SQED li
ZidQ Z Gc(/) Gl/oop

dictionary:
. 3
ZCFT ™~ Zgauge; 4 — ef /bo y Qo= _b0/2
—o SIS, -0 ==
a1:Q°+I 2’ a3:%_11+221 2 014:%—1122,

where ¢; = /P ®i, ¢ = eP=i
> gauge theory flop symmetry < g-CFT crossing symmetry

> [)) — 0 limit recovers [Dorud-Gomis-LeFloch-Lee]
» CFT: Virg,: — Virasoro, we recover Liouville theory results

» gauge: S% x S' partition function reduces to S partition function



Now assume that chiral blocks are paired as:

Hf(X; ")HZ = f(x;q)f (% 4).

where

27iX Jwa 27”.(%

~ . il
X =e , X = ezﬂ'IX/wl’ _ il



S-pairing g-CFT

Now assume that chiral blocks are paired as:
2 ~ ~
’VWWWSZNKWHMW~
where

27iX Jwa

~ i ori¥l
x=e , x:e27”X/‘*’1, i

g=¢e w2, gg=e '«
The bootstrap equations are solved by:

B 1 S3(2a)
Cs(az, a0, a1) = Si(2at — E) ,1;[1 S3(2ar — 2a;)

3

where E = wy + w» + w3 and

Ss(X)oc ] (wim +wany +wsns + X) (wim + wany + winz + E — X)

n1,n2,n3=0



(SQED Nf =2 on S} < S-pairing 4-point degenerate correlator]

24

S—

SQED __
Z Z lloop

2
4}~ S
i=1



(SQED Nf =2 on S} < S-pairing 4-point degenerate correlator]

2
2
SQED __ (s)
Z3 E, lloop ‘Z H NE:KII
S -
i=1
dictionary:
1
ay = —ws3/2, w1 = b, w2 = s
__E s mp—m. _w * M1+ M —my—m:
ap =5 + iS5, a3 =5 - AEReEEER

ZCFT

Ny =

. Oy
'
— !
- H
X 1
I q B o,
~ Zgauge
E _ I nm —I‘F]z
2 )



(SQED Nf =2 on S} < S-pairing 4-point degenerate correlator]

2 ¢
SQED __ (s) s) :
Zs E, lloop ‘Z H NE:KII —E !
i=1 :
Oy
dictionary:
1
Qo = 7(.4.}3/2, w1 = ba w2 = Ba ZCFT ™~ Zgauge
al:ng,'@, 043:%*,'W7 a4:§ Ct=Liy

> gauge theory flop symmetry < g-CFT crossing symmetry
> three possibilities:

1
ap = —wi/2, b = wj, 5= i#j#k=1,2,3.

corresponding to the three big deformed S* inside a deformed S°.



so far:
3d gauge theory partition functions < g-CFT degenerate correlators

2 5 U:z (o5
(s) _ § : :
~ E :Kii T !
id - S,id - !
i=1 s e o

SQED
Z Q Z Gc/ 1Ioop Ii(S)

2ol 27

51



so far:
3d gauge theory partition functions < g-CFT degenerate correlators

a, (o5
Z 2 K(S) 2 — i
~ E , i L E !
S,id - S,id ) |
i=1 ! a, BE(\ o,

SQED
Z Q Z Gc/ 1Ioop Ii(S)

Let’s now consider non-degenerate correlators
Example:

a, O3

<Va1 Va2 Va3 Va4>5,id — /dOé | = /dOé CS,id C57,'d (Conf.Blocks)

a Ay

in analogy with the AGT case, one could expect that

5d gauge theory partition functions < g-CFT non-degenerate correlators



Computes the super-conformal index:

ls = Tr (—1)F gl R Rzl

Coulomb branch localisation yields:

2
254><51 :/dU leoop(U m) mst( ,rﬁ, Z)

[Kim-Kim-Lee],[Terashima], [Igbal-Vafa]

ZSd

mst((?? _i7 Z)

2
’ comes from point-like instantons at N and S poles

lloop contribution can be re-written as:
vector multiplet:

Zlaan(0) = l_I'T"lg (i) TP (—ia(0))

a>0
hypermultiplet of mass m in a representation R:

20 (o, m,R) = [ 7* (i(p(a) +m) + %)7

PER



Zsiy g1 is captured by non-degenerate correlators with Virg: @ Virg:
symmetry and id-pairing 3-point function.



Zsiy g1 is captured by non-degenerate correlators with Virg: @ Virg:
symmetry and id-pairing 3-point function.

Example: SCQCD, SU(2), Nf = 4 < 4-point correlator

ZS?“CSSCP = (Vi Vo, Vs Vg )ia = /da

» 5d instantons vs Virg: non-degenerate conformal blocks:

[Awata-Yamadal,[Mironov-Morozov-Shakirov-Smirnov|

Z_Sd,SCQCD — ]_-qt (Z)

inst [e5Xe T e Te %Yo 7

» lloop vs 3-point function:

4
Zoap(0) HZB);%?(@ m;) = Cig(a1, az, ) Cig(Qo — o, a3, (g)
i=1

dictionary:

a:ia+%,a1:ta2:im172+Qo, a3:|:044:im374+Qo



Zsiy g1 is captured by non-degenerate correlators with Virg: @ Virg:
symmetry and id-pairing 3-point function.

Example: SCQCD, SU(2), Nf = 4 < 4-point correlator

ZS?“CSSCP = (Vi Vo, Vs Vg )ia = /da

» 5d instantons vs Virg: non-degenerate conformal blocks:

[Awata-Yamadal,[Mironov-Morozov-Shakirov-Smirnov|

Z_Sd,SCQCD — ]_-qt (Z)

inst [e5Xe T e Te %Yo 7

» lloop vs 3-point function:

4
Zoap(0) HZB);%?(@ m;) = Cig(a1, az, ) Cig(Qo — o, a3, (g)
i=1

dictionary:

a:ia+%,a1:ta2:im172+Qo, a3:|:044:im374+Qo

— use Cig since S% x S1 is a codim-2 defect/degenerate primary (cf.[iqbal-Vafa])



N =1 theories on S°
(see Seok Kim's talk)

Localisation on w?|z; |2 + w3|z|? + wi|z|? = 1 yields

255 = /d& ch(ﬁ7 ) Zl/oop( I’ﬁ(ﬁ)

leiztl( m, z; q, t) Z'5d7”(5', m,z;q,t) Z,iztm( 7

M,z q,t) "

[Lockhart-Vafa], [ Kim-Kim-Kim]



N = 1 theories on S°
(see Seok Kim's talk)

Localisation on w?|z1|2 + w?|z|? + w3|z3|? = 1 yields:

ZS5 = /d& ch(g,T;Ca) leoop(&a n:;r“j)

S5d = = _. 5dll =~ = _. 5d, Il —» = _. -1
><Zinst (O’, m,z,q, t) Zinst (O’, m,z,q, t) Zinst (07 m,z.q, t)
[Lockhart-Vafa], [ Kim-Kim-Kim]

» |Instantons comes with equivariant parameters

. omi¥2  —omit3 omi 2l —omid omi L o2
(qzt)' e L,e B ) e 2,e 2 ) € 3,e 3
! I i



(see Seok Kim's talk)

Localisation on w?|z;|? 4+ w?|z|? + w?|z|> = 1 yields:
ZS5 = /d& ZC/(E,T;(E) leoop(&a Iﬁ,@)

5d,/ w2 S5dll—» = 5d, 111 " 1
XZing (0, M, 2,q,t) Z;, (0, M, 2, q,t) Zpg (6, M, z;.q, t)
[Lockhart-Vafa], [ Kim-Kim-Kim]

Instantons comes with equivariant parameters

. 271'1'% 7271'1:3 27!'!:1 727“:;'3 2#/% 2#152
(g,t): |e 1e 1), (e 2,e 2], (e 3.e 3
! 1" 1"

lloop contribution
vector multiplet:

Zieo(0) = [ [ Ssliel0))Ss(—ia(o))
a>0
hypermultiplet of mass m in a representation R:

. EN'
2zs(o.m R) = [ 5 (toto) 4 m) + £

PER



Zss is captured by non-degenerate correlators with Virge @ Virge @ Virg:
symmetry and S-pairing 3-point function.



Zss is captured by non-degenerate correlators with Virge @ Virge @ Virg:
symmetry and S-pairing 3-point function.

Example: SCQCD, SU(2), Nf =4 & 4—point correlator

Z2E0P = (Vi Vi, Viay Vi) s = / da

Oy

» bd instantons vs Virg: non-degenerate conformal blocks:

[Awata-Yamadal,[Mironov-Morozov-Shakirov-Smirnov|

75d.5CQCD _ gt

inst [e5Xe% Yo 7e %Yo 7Y

» lloop vs 3—point function:

illeoccfp H ZHEZ;(Q m;) = Cs(an, az,a)Cs(E — a, a3, o4)

. . . . . E . .
with dictionary: a =ioc+ 35, ar+ax=im+E, a1 —ax=im
az+ag=imy+E, az3—as=imy.



Zss is captured by non-degenerate correlators with Virge @ Virge @ Virg:
symmetry and S-pairing 3-point function.

Example: SCQCD, SU(2), Nf =4 & 4—point correlator

Z2E0P = (Vi Vi, Viay Vi) s = / da

Oy

» bd instantons vs Virg: non-degenerate conformal blocks:

[Awata-Yamadal,[Mironov-Morozov-Shakirov-Smirnov|

75d.5CQCD _ gt

inst [e5Xe% Yo 7e %Yo 7Y

» lloop vs 3—point function:
h
illeoccfp Hz1y|2:;,(0a m;) = Cs(an, az,a)Cs(E — a, a3, o4)

. . . . . E . .
with dictionary: a =ioc+ 35, ar+ax=im+E, a1 —ax=im
az+ag=imy+E, az3—as=imy.

— use Cs since S is a codim-2 defect/degenerate primary (cf.[Lockhart-Vata] )



Test:

For ap — —ws/2 the S5 partition function degenerates:

SCQRCD SQED
[ZSS - 78 ]




For ap — —ws/2 the S5 partition function degenerates:

SCQRCD SQED
[Zss - 78 ]

Because of zeros and poles in Zy50p the integration contour is pinched
and gets contributions only from o = ay + w3/2:

mst mst mst

N
[ o 2up 22 28t 22828 - )l |20

5d,/ _ ~(1,2) 5d,11 _ %
stt_z('”)ﬁz('”)_zv 3 stt - Z()%Z()_Z
YL, Ys 0,17 Wi, Ws 0,n
5d n _
Zng' = 2 ()= 2 () =1
X1,X2 0,0

and likewise for permutations of w1, wo, ws.



For ap — —ws/2 the S5 partition function degenerates:

SCQRCD SQED
[Zss - 78 J

Because of zeros and poles in Zy50p the integration contour is pinched
and gets contributions only from o = ay + w3/2:

mst mst mst

N
[ o 2up 22 28t 22828 - )l |20

LSHEDSCHED DD EEVE NN SICOED S EE:

Y1,Y2 0,17 Wy, Ws 0,n

=N ()= () =1
0,0

X1, X
and likewise for permutations of w1, wo, ws.
Similar story for the S3 x S index: for special values of fugacities

the index satisfies difference equations. [Gaiotto-Rastelli-Razamat]

Degenerate correlators/Z;QED are crossing-symmetry/flop invariant;
b

Is there crossing-symmetry on S°, what is its gauge theory meaning?



Hints of a g-CFT-like structure in 5d and 3d partition functions.

Study modular invariance in the 5d/non-degenerate case.

2
Consider other pairings H( . )H and other geometries.

Use ¢g-CFT to study gauge theory. For example construct g-CFT
Verlinde loop operators and study their gauge theory meaning.



