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The IID paradigm

The IID paradigm of randomness

• Independent and Identically Distributed (I.I.D.) is the most
popular model of randomness in science

• Tractable, interpretable, easy
• Lead to many foundational ideas and methods in ML

Questions
• Is there a real benefit to exploring beyond IID ?
• Even if there is, would it be realistic ?
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Particle systems : ideal vs. real

Ideal Coulomb

Problem
IID samples may be less representative or less stable
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IID vs strongly correlated samples

Monte Carlo sampling

Λ(f) :=
∫

f (x)dµ(x)←→ ΛS(f) :=
1
|S|

∑
i∈S

f (Xi)

Sampling Coresets

L(f) =
∑
x∈X

f(x), f ∈ F ←→ LS(f) :=
∑
x∈S

w(x)f(x)
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Many applications of sampling

Feature Selection
Sample a subset of columns of a low rank matrix to be
representative of the entire matrix

Neural Network Pruning
Delete redundant edges from a neural network without
compromising on quality of output

.............

• “Negative Dependence as a toolbox for machine learning : review
and new developments”
H.S. Tran, V. Petrovich, R. Bardenet, S.Ghosh
Arxiv preprint
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Many applications of sampling

IID samples
Approximation guarantee O(m−1/2)

Strongly Correlated samples
Approximation guarantee O(m−γ), γ > 1/2
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IID vs strongly correlated samples

IID vs strongly correlated samples
Suitable strongly correlated samplers provide similar
approximation guarantees with much smaller sample size than IID

Key benefits
Significant benefit in settings where function evaluation is costly

• Stochastic Gradient Descent (SGD) for highly complex
functions

• Large scale neural networks
• Large scale conditional random field (CRF) models
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Strongly correlated particle systems: some natural models

Determinantal Point Processes
A significant class of natural strongly correlated particle systems
are Determinantal Point Processes or DPPs :

combination of
tractability and feasibility

• A DPP is a random set of points that all interact with each
other, and where the interaction is encoded by a kernel.

• DPPs are, in a sense, the kernel machine of particle systems.
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Strongly correlated particle systems: some natural models

Origins in physics
DPPs originate canonically in quantum and statistical physics

• DPP strtucture arises as Slater determinants in wave-functions
for Fermions (following earlier work by Heisenberg and Dirac)

• Connections to a wide interface of physics and mathematics,
including random matrices, random polynomials, random
networks, Coulomb gases ...
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Correlation functions

Correlation functions
A random point set is characterised by its ‘correlation functions’,
which are essentially the joint probabilities of having points at
specified locations

• If α1, . . . , αm are m fixed locations, then the m-point
correlation function ρm(α1, . . . , αm) is the joint probability
(density) of having points at the locations α1, . . . αm in a
realization of the random point set.

• E.g.: for iid points with density ρ then ρm(α1, . . . , αm) = ρm
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DPP correlation functions

Correlation functions of a DPP
The m-point correlation functions of a DPP are given by
determinants of a kernel K :

ρm(α1, . . . , αm) = Det

 K(α1, α1), . . . . . . K(α1, αm)

. . . . . . . . . . . .

K(αm, α1), . . . . . . K(αm, αm)



• DPPs are particle systems parameterised by a kernel K.
• Repulsion : if αi and αj are the close to each other for

different i and j, then ρm is close to 0.
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DPP models

Sampling diversity
DPPs are, therefore, effective in modelling situations where the
sample points are desired to be very different from each other.

• E.g., in diversity sampling,
• Population is represented by points in some (high dimensional)

feature space
• Kernel K incorporates the proximity between these points in

the feature space
• This in turn encodes the ‘similarity’ between points in the

ground set we want to sample from

• Applications include Feature Selection, Monte Carlo
integration, Coreset selection, Dimensionality Reduction ....
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Orthogonal Polynomials

• For a probability distribution γ on a euclidean space Rd,
consider the monomial functions (x1, . . . , xd) 7→ xα1

1 · · · x
αd
d in

the graded lexical order.

• Then apply the Gram-Schmidt algorithm in L2(γ) to these
ordered monomials.

• This yields a sequence of orthonormal polynomial functions
(φk)k∈N, the multivariate orthonormal polynomials w.r.t. γ.

• Construct a DPP with the kernel given by the projection

K(x, y) =
m−1∑
k=0

φk(x)φk(y),

14
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Orthogonal polynomials and DPPs

Orthogonal polynomial models
An effective choice of kernel for sampling applications: Projection
kernel onto spaces of orthogonal polynomials (OP) ⊆ L2(µ)

• Computing OP kernels equivalent to computing moments of µ
• Rank of kernel = number of moments needed = sample size
• Can be naturally extended to Reproducing Kernel Hilbert

Space (RKHS) of approximating functions

15



Orthogonal polynomials and DPPs

Orthogonal polynomial models
An effective choice of kernel for sampling applications: Projection
kernel onto spaces of orthogonal polynomials (OP) ⊆ L2(µ)

• Computing OP kernels equivalent to computing moments of µ
• Rank of kernel = number of moments needed = sample size
• Can be naturally extended to Reproducing Kernel Hilbert

Space (RKHS) of approximating functions

15



How much mileage does a DPP sampler give?

Theorem (Bardenet-G.-Simon-Tran’24 ; Bardenet-G.-Lin
’21)

• OP based DPP samplers give approximation guarantees
OP

(
m−(1/2+1/(2d)))

• PAC bounds of the same order (upto log factors) for several
ML applications

• Here d may be taken to be the reduced dimension of the data
(after pre-processing via dimension reduction)

• DPP is fundamentally a Hilbert space based technique, so it
works well with linear projection based dimension reduction
methods
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’21)

• OP based DPP samplers give approximation guarantees
OP

(
m−(1/2+1/(2d)))

• PAC bounds of the same order (upto log factors) for several
ML applications

Regularity and rates
• Better rates possible for function classes with smoothness

properties using RKHS techniques
• Interplay between smoothness of objective and rate of DPP

approximation remains to be fully understood
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How much mileage does a DPP sampler give?

Theorem (Concentration bounds ; Bardenet-G.-Simon-
Tran’24)
Let Φ = (φ1, . . . , φm)⊤ be a vector-valued test function,

and set
Λm(Φ) := (Λm(φi))m

i=1, V(Φ) = (VarΛm(φi)
1/2)m

i=1 . Then

P(‖Λm(Φ)− E[Λm(Φ)]‖ ≥ ε) ≤ 2m exp
(
− ε2

4A‖V(Φ)‖2
)
,

for 0 ≤ ε ≤ 2A∥V(Φ)∥
3 ·min1≤i≤m

√
VarΛm(φi)
∥φi∥∞ ·

18
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Concentration and strong dependence

• This is an example of a concentration phenomenon (with
features similar to those for independent r.v.s), but in the
context of strongly dependent stochastic model.

• Underscores how DPP blends strong dependence with
structure and tractability, which allows for such powerful
results
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General structure and scope

• DPP samplers provide representative samples in very general
settings

• This includes complicated geometries or even discrete,
combinatorial or non-geometric background spaces

• Other methods, such as grid points or low discrepancy
sequences

• are very specific to simple geometric settings (such as
Euclidean spaces)

• may scale poorly with dimension
• DPP samplers provide a notion of a ”stochastic grid pattern”

when there may not even be any geometry to support the
notion of a grid

• The power of abstraction: DPPs are able to handle abstract
spaces without geometry by looking at the function space on
top of that space, thereby bringing to bear many tools from
Euclidean spaces

20
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Some heuristics

The power of the second-order effect
• It is crucial that the sample points “see” each other for

improvement in the exponent on m :

interactions must be at
least two body

• If not, we are reduced to importance sampling, which achieves
improvement only in the leading constant

• It is crucial that the kernel K is a projection operator on
L2(µ), otherwise fluctuations are Poissonian in nature, and
usually of similar order as independent sampling

21
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L2(µ), otherwise fluctuations are Poissonian in nature, and
usually of similar order as independent sampling
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Sampling from DPPs

Hough-Krishnapur-Peres-Virag ’06
Spectral sampling algorithm available, leveraging Hilbert space
geometry of the kernel mapping

Gillenwater et al ’19 ; Tremblay et al ’23 ; Anari et al ’24
New tree-based algorithms built on top of the classical spectral
sampler gives fast computational load of O(m2 logN) (and
similar) for each sample
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Statistical Learning Theory

Key challenges
• Lack of independence of sample points renders fundamental

empirical process techniques ineffective
• Eg, the basic symmetrization trick fails!
• Concentration phenomena understood only to a limited extent

Theorem (Dong-G.-Mendelson-Tran, preliminary results)
In 1D, we have

E

[
sup

f ∈H2(T)
|Λm(f)− E [Λm(f)]|

]
≲
√
logm
m

• Better than Gaussian rates (compared to independent
samples)

• Compare: Discrepancy lower bound is O(1/m)

• Higher dimensions : in progress with promising early results
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Towards a parametric theory of DPPs

• DPPs have emerged as a clearly interesting class of stochastic
models to use as a sampling toolbox

• In statistical applications of DPPs (spatial statistics, biological
data

c.f. Lavancier, Moller, Rubak, Taskar, Brunel, Baccelli...)
• A robust parametric model with naturally interpretable

parameter modulation is squarely lacking.
• Compare, e.g., to the well-known exponential family models in

probability, or Exponential Random Graph Models (ERGM)
that are popular in the study of stochastic networks.

• A parametric model will be a ‘testing ground’ to understand
how the spatial behaviour of the points responds to parameter
modulation, in turn leading to newer applications and even
stronger models ...
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Towards a parametric theory of DPPs

• To this end, we propose the model of Gaussian
Determinantal Process (GDP) [G. & Rigollet, PNAS (2020)]

• The GDP is indexed by the space of positive definite matrices
of a given dimension, which we will call the scattering matrix

• Connection to Spiked Models of random matrices and Spiked
PCA

• Applications to dimension reduction and clustering
• New kinds of random matrix phenomena based on truncated

covariance matrices, leading to novel spectral asymptotics and
connections with free probability ...
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Gaussian Determinantal Processes

• A DPP is specified by the underlying kernel.
• The points of a GDP lives on Rd, and the kernel is simply the

d-dimensional Gaussian density with some positive definite
covariance matrix Σ (which is the scattering matrix
parameterizing the GDP):

K(x, y) = 1
(2π)d/2

√
Det(Σ)

exp

(
−1

2(x− y)TΣ−1(x− y)
)
.

• The mean density of points in a DPP with kernel K is simply
given by K(x, x) - so the mean density of points in GDP is
= 1

(2π)d/2
√

Det(Σ)
.

• Our observation consists of the points in a realisation of the
GDP inside a ball of large radius R.
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Parametric modulation in GDP

• Our goal is to interpret the stochastic implication of varying
or modulating the parameter Σ in the space Pd of d× d
positive definite matrices.

• Note that modulating Σ such that Det(Σ) changes will lead
to a change in the mean density of points, and can be
detected simply by estimating this average density from the
observed points.

• We will therefore focus on parametric modulation that leaves
the determinant Det(Σ) invariant - similar to shear mappings
or shear transformations.

27



Parametric modulation in GDP

• Our goal is to interpret the stochastic implication of varying
or modulating the parameter Σ in the space Pd of d× d
positive definite matrices.

• Note that modulating Σ such that Det(Σ) changes will lead
to a change in the mean density of points, and can be
detected simply by estimating this average density from the
observed points.

• We will therefore focus on parametric modulation that leaves
the determinant Det(Σ) invariant - similar to shear mappings
or shear transformations.

27



Parametric modulation in GDP

• Our goal is to interpret the stochastic implication of varying
or modulating the parameter Σ in the space Pd of d× d
positive definite matrices.

• Note that modulating Σ such that Det(Σ) changes will lead
to a change in the mean density of points, and can be
detected simply by estimating this average density from the
observed points.

• We will therefore focus on parametric modulation that leaves
the determinant Det(Σ) invariant - similar to shear mappings
or shear transformations.

27



Parametric modulation in GDP

• A key family of modulations that we will consider will be in
the form of a Spiked Model in the space Pd.

• Formally, for a unit vector u and λ > 0, we will consider

Σ = (1 + λ)uuT + (1 + λ)−
1

d−1 (Id − uuT).

• λ = 0 makes Σ = Id - the ‘isotropic’ model with no directional
bias in the dependency structure of the points.

• λ > 0 corresponds to a spiked model that introduces
directional bias in the strength of the dependency structure.
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Parametric modulation in GDP

• The dependence (in this case, repulsion) between the points is
much stronger, e.g. much more long-ranged (on the scale
1 + λ), in the spike direction u.

• The dependence in the directions orthogonal to the spike is
much weaker, and decouples to almost independent behaviour
at relatively short length scales.
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Parameter estimation in GDP

•

Σ̂ = |B(1)| rd+2

d + 2 Id −
1

|B(R− r)|
∑

∥Xi−Xj∥<r
(Xi − Xj)(Xi − Xj)

T

is a consistent estimator of Σ.

• Bias variance tradeoff leads to optimal choice of
r = Θ(

√
d log n).

• Test statistics λmax(Σ̂), umax(Σ̂) allow detection of anisotropic
direction with high probability if the spike size λ is above a
threshold λn,d (connections to BBP phase transition in spiked
models of random matrices)

• Leads to study of truncated, and more generally, kernelized
covariance matrices
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Dimension Reduction and Directionality in Data

• The problem of dimension reduction is one of the central
problems in the applied mathematics.

• Roughly speaking, dimension reduction involves finding a
low-dimensional subspace, or equivalently, a small number of
‘significant directions’, which contains most of the information
about the (high dimensional) data.
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Dimension Reduction and Directionality in Data

• Thus, the problem of dimensional reduction and the problem
of detecting directionality in data are closely related.

• In P.C.A., we are interested in the directions of maximal
variability, which are obtained by taking the principal
eigen-directions of the empirical covariance matrix of the data.

• We may view the problem more generally, where dimension
reduction will be performed by finding the optimal directions
with respect to some other feature (as opposed to variance in
the case of P.C.A.)
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Dimension Reduction

• We use the GDP model as an ansatz for proposing a
dimension reduction methodology.

• We may compute the quantity Σ̂ for any observed data set in
Rd. We then perform SVD on Σ̂ and project the data points
on to the principal eigen-directions of Σ̂ in order to uncover
low dimensional directional features in the data.
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Dimension Reduction : Fisher’s Iris
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Theoretical analysis
In progress (with Dong, Mukherjee and Talukdar): minimax
optimal guarantees for GDP-based clustering algorithms.
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Kernelized sample covariance matrices

Kernelized sample covariance matrix

Mβ,n =
1

2n2

∑
1≤i,j≤n

Kβ(Xi,Xj)(Xi − Xj)(Xi − Xj)
⊤

Typically:
Kβ(x, y) = φβ(D(x, y)),

where D is a distance and β can scale with dimension.

• The indicator kernel I(‖x− y‖ ≤ rn,d)

• The Gaussian kernel 1− exp
(
− ∥x−y∥2

2τ2
n,d

)
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Limiting Spectral Laws of kernelized covariance matrices

Limiting Spectral Laws of kernelized covariance matrices
(with Mukherjee and Talukdar, arxiv)
• Depending on regularity properties of the kernel Kβ, different

asymptotic spectral laws can be established when the Xi’s are
i.i.d.

• For smooth kernels, shifted and scaled family of
Marcenko-Pastur type laws

• For non-smooth kernels, provable convergence to a more
complicated spectral asymptotics that is characterised
implicitly by an equation on the Stieltjes transform

• Crucial issue is the dependence between the coefficient
Kβ(X1,Xj) and the rank 1 matrix (Xi − Xj)(Xi − Xj)⊤.
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Zeros of Gaussian power series

Zeros of Gaussian power series
A different strongly correlated random point field: zeros of
Gaussian power series

∞∑
k=0

ξk
zk
√

k!

• Arises in the study of quantum chaotic eigenstates
(Bogomolny, Bohigas, Lebeouf, Nonenmacher, Voros ...)

• Captures the distribution of zeros of short time Fourier
transform (STFT) of white noise
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Gaussian zeros and signal processing
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Gaussian zeros and signal processing
• Gaussian zeros form a strongly correlated point set
• Strongly rigid geometry makes deviations easy to detect
• Amenable to topological data analysis tools for signal

reconstruction in a wide class of time indexed problems (incl.
gravitational waves) 38



Why do DPP samples have reduced fluctuations ?

Var [Λm(f)] =
∫∫
‖f (z)− f (w)‖22 |Km(z,w)|2dµ(z)dµ(w)

≲M(f) · 1
m2

∫ ∫
‖z−w‖22 |Km(z,w)|2dµ(z)dµ(w)

• If ‖z− w‖22 was not present, then∫∫
|Km(z,w)|2dµ(z)dµ(w) = m implies Var ≲ m−1, same as

uniform random sampling
• Main contribution to

∫∫
|Km(z,w)|2dµ(z)dµ(w) comes from

near the diagonal z = w, which is precisely suppressed by the
term ‖z−w‖22.

• Use Christoffel-Darboux formula to make this control precise
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≲M(f) · 1
m2

∫ ∫
‖z−w‖22 |Km(z,w)|2dµ(z)dµ(w)

• If ‖z− w‖22 was not present, then∫∫
|Km(z,w)|2dµ(z)dµ(w) = m implies Var ≲ m−1, same as

uniform random sampling
• Main contribution to

∫∫
|Km(z,w)|2dµ(z)dµ(w) comes from

near the diagonal z = w, which is precisely suppressed by the
term ‖z−w‖22.

• Use Christoffel-Darboux formula to make this control precise
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