

Gravitational Positive Energy Theorems from Information Inequalities

Hirosi Ooguri

Walter Burke Institute for Theoretical Physics, California Institute of Technology Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo

Swampland Question

Given an effective theory of gravity, how can one judge whether it is realized as a low energy approprimation to a consistent quantum theory with ultra-violet completion, such as string theory?

Constraints on Symmetry

Conjectures:

- ☆ There are no global symmetry.
- ☆ All continuous gauge symmetries are compact.
- ☆ The spectrum of electric and magnetic charges forms a complete set consistent with the Dirac quantization condition.

Conjectures:

- ☆ There are no global symmetry.
- ☆ All continuous gauge symmetries are compact.
- ☆ The spectrum of electric and magnetic charges forms a complete set consistent with the Dirac quantization condition.

Holographic understanding:

Harlow, arXiv: 1510.07911 Harlow + H.O., to appear

Constraints on Moduli Space

Conjectures:

- ☆ The moduli space is non-compact, complete, and has finite volume.
- If we move a large distance T from a reference point, a tower of light particles emerges with mass of the order $\exp(-aT)$ for some a. The number of such light particles becomes infinite at T tends to the infinity.
- ☆ There is no non-trivial one-cycle with minimal length within a given homotopy class in the moduli space.

as formulated by Vafa + H.O., arXiv:0605264

Conjectures:

- ☆ The moduli space is non-compact, complete, and has finite volume.
- ☆ If we move a large distance T from a reference point, a tower of light particles emerges with mass of the order $\exp(-aT)$ for some a. The number of such light particles becomes infinite at T tends to the infinity.
- ☆ There is no non-trivial one-cycle with minimal length within a given homotopy class in the moduli space.

as formulated by Vafa + H.O., arXiv:0605264

These moduli space constraints have been proven for theories with N=3 or higher supersymmetry.

Constraints on Calabi-Yau Topology

Modular invariance constraints

Keller + H.O., arXiv: 1209.4649

conformal dimensions

Recent experimental data on Calabi-Yau 3 and 4 folds

Taylor + Wang, arXiv: 1510.04978, 1511.03209

Holographic Constraints

Suppose there is a low energy effective field theory whose gravity solutions asymptote to the anti-de Sitter space at the infinity.

Suppose there is a low energy effective field theory whose gravity solutions asymptote to the anti-de Sitter space at the infinity.

Holography of Quantum Gravity:

Consistent quantum gravity in AdS is equivalent to a conformal field theory on the boundary.

AdS/CFT Correspondence

Question: What does consistency of the conformal field theory mean for the gravity theory?

Gravity theory in (d+1)-dim AdS

Gravity theory in (d+1)-dim AdS is equivalent to d-dim CFT.

Gravity theory in (d+1)-dim AdS is equivalent to d-dim CFT.

Entanglement Density Matrix ho

For any state $|\psi\rangle$ in CFT, choose a spacelike region A.

$$\rho = tr_{\bar{A}} |\psi\rangle\langle\psi|$$

- ☆ The trace is on the Hilbert space over the complement of A.
- ☆ It is an operator acting on the Hilbert space over A.

Entanglement Density Matrix ρ

$$\rho = tr_{\bar{A}} |\psi\rangle\langle\psi|$$

Entanglement Entropy *S*

$$S = -\operatorname{tr} \rho \log \rho$$

5 measures the amount of entanglement between the region A and its complement.

Entanglement Entropy S

$$S = -\operatorname{tr} \rho \log \rho$$

When the bulk gravity theory is described with smooth geometry, the entanglement entropy **S** is proportional to the area of the minimum surface ending of the boundary of A.

$$S = \frac{1}{4G_N} Area(\Sigma)$$

Ryu-Takayanagi (2006)

Entanglement Entropy satisfies inequalities:

$$S = -\operatorname{tr} \rho \log \rho$$

☆ Some inequalities are satisfied both by any CFT and by AdS gravity.

☆ Some inequalities are satisfied by any CFT but not always by AdS gravity.

☆ Some inequalities are satisfied
by any AdS gravity but not always by CFT.

Strong Subadditivity:

$$S(AB) + S(BC) \ge S(B) + S(ABC)$$

CFT states with gravitational duals have interesting entanglement properties.

Entropy Inequalities

(Classical) Shannon Entropy:

There are *infinite number* of independent entropy inequalities for more than 3 regions.

⇒ Asymptotic performance for information processing tasks

Matus (2007)

(Quantum) von Neumann Entropy:

For more than 3 regions, the complete set of independent inequalities is **not known**.

 \Rightarrow Numerical evidences that the number is infinite.

For holographic states:

- ☆ Finite algorithm to classify all inequalities.
- ☆ There are finitely many independent inequalities for a fixed number of regions.
- ☆ Complete classification for 2, 3, 4 regions.
- ☆ A new family of inequalities for 5 and more regions.

Bao, Nezami, Stoica, Sully, Walter + H.O., arXiv:1505.07839

Strong Subadditivity:

 $S(AB) + S(BC) \ge S(B) + S(ABC)$

Strong Subadditivity:

 $S(AB) + S(BC) \ge S(B) + S(ABC)$

Information theoretical constraints on low energy effective theories

Positivitive Energy Conditions

Energy and Entropy

based on formalism developed by Wald & collaborators

I: Subregion of a Cauchy surface

We will choose Σ = entanglement wedge \cap Cauchy surface,

i.e. a subregion bounded by

a Ryu-Takayanagi surface (or HRT surface for a time-dependent case) and the AdS boundary.

$$L(g)$$
: Lagrangian density
$$SL(g) = d\theta(8g) + e.o.m.$$

$$\int \delta_1 \theta(\delta_2 g) - \delta_2 \theta(\delta_1 g)$$

$$= \Omega(\delta_1 g, \delta_2 g)$$

Analogy:

$$L(Q) = \frac{1}{2} \left(\frac{dQ}{dt} \right)^2 - V(Q)$$

$$\begin{split} \delta L(Q) &= \frac{d}{dt} \left(\frac{dQ}{dt} \delta Q \right) + e.o.m. \\ &= \frac{d}{dt} \theta(\delta Q) + e.o.m. \end{split}$$

$$\delta\theta = \delta P \wedge \delta Q$$

Hamiltonian Hz for a vector field & on I to generate Lzg

$$SH_{\xi} = \Omega (8g, L_{\xi}g)$$

$$= \int \delta\theta (L_{\xi}g) - L_{\xi}\theta (8g)$$

$$\Sigma$$

$$(L_{\xi}\theta = \underline{\xi} \cdot d\theta + d(\underline{\xi} \cdot \theta))$$

$$SL + e.o.m.$$

$$= \int \delta \left(\theta(\lambda_{\xi}g) - \xi \cdot L \right)$$

$$- \delta \xi \cdot \theta(\delta g)$$

Analogy:

$$SH = SP \frac{dQ}{dt} - SQ \frac{dP}{dt}$$

$$= S(P \frac{dQ}{dt})$$

$$- \frac{d}{dt} (P SQ)$$

$$= S(P \frac{dQ}{dt} - L)$$

Hamiltonian Hz for a vector field & on I to generate Lzg

$$\delta H_{\xi} = \Omega (\delta g, L_{\xi} g)$$

$$= \int \delta \theta (L_{\xi} g) - L_{\xi} \theta (\delta g)$$

$$\Sigma$$

$$\left(\begin{array}{c} \mathcal{L}_{\overline{3}}\theta = \underline{\tilde{s}} \cdot d\theta + d(\underline{\tilde{s}} \cdot \theta) \\ \underline{\tilde{s}} L + e.o.m. \end{array}\right)$$

$$= \int \delta \left(\theta(L_{\xi}g) - \xi \cdot L \right)$$

$$\sum$$

$$\delta H = \delta P \frac{dQ}{dt} - \delta Q \frac{dP}{dt}$$

$$= \delta (P \frac{dQ}{dt})$$

$$- \frac{d}{dt} (P \delta Q)$$

$$= \delta L + e.o.m$$

$$= \delta \left(P \frac{dQ}{dt} - L \right)$$

boundary terms are important in gravity 34/46

$$\delta H_{\xi} = \int \delta(\theta(L_{\xi}g) - \xi \cdot L) - \oint \xi \cdot \theta(\delta g).$$

If
$${}^{3}B$$
 on $\partial \mathcal{L}$ such that $\xi \cdot \theta(\delta g) = \delta(\xi \cdot B)$,

$$H_{\xi} = \int J_{\xi} - \oint \xi \cdot B \qquad \text{where}$$

$$J_{\xi} = \theta(L_{\xi}g) - \xi \cdot L .$$

e.g. pure Einstein gravity,

$$L = \frac{1}{2} (R - \Lambda) e, \qquad e: \text{ spacetime volume form}$$

$$\theta(\delta g) = \frac{1}{2} (g^{\mu\nu} D^{\beta} - g^{\nu\beta} D^{\mu}) \delta g_{\nu\beta} e_{\mu}, \qquad e_{\mu} : \text{ volume form on } \Sigma$$

$$B \propto \text{ extrinsic curvature } (Gibbons - Hawking term)$$

Relative Entropy

140> : vacuum in CFT

Dure AdS geometry

14): any CFT state

squarity solution

$$\beta = \pi_{\overline{A}} | 1 \rangle \langle \gamma |$$

Relative entropy:

$$S(S|S_0) = -tn [SlogS_0]$$

+ $tn [SlogS]$

measures the distance between

$$Po = t_{\overline{A}} / 140 > < 40/$$

$$g = t \pi_{\overline{A}} | 1 \psi \rangle \langle \psi |$$

When A is a ball,

the modular Hamiltonian = -log go is simplified, and S(glgo) has a holographic expression.

(modular Hamiltonian) p

Metric asymptotics on A

11

- (Entanglement Entropy)

Minimum surface area

Hamiltonian
$$H_{\xi} = \int J_{\xi} - \oint \xi \cdot B$$

$$\Sigma = \partial \Sigma$$

Relative Entropy = Energy in Intanglement Wedge

$$S(g \mid g \circ) = H_{\xi}(g) - H_{\xi}(g \circ)$$

Lashkari, Lin, Stoica, van Raamsdonk + H.O. arXiv: 1605.01075

For linear variation,
$$\beta = \beta + \delta \beta$$

 $S(\beta + \delta \beta, \beta = \delta)$

implies the linearized Einstein equation in the bulk.

Faulkner, Guica, Hartman, Myers + Van Raamsdonk, ar Xiv: 1312.7856

In the quadratic order, including backreaction to geometry,

 $S(g|g_0) \ge 0$, $\frac{d}{dR} S(g_1g_0) \ge 0$

(R: radius of A)

Integrated positivity of the bulk energy-momentum tensor,

$$\int_{\Sigma} \xi^{n} \left(T_{\mu\nu}^{\text{matter}} + T_{\mu\nu}^{\text{gravity}} \right) e_{\Sigma}^{\nu} \geq 0$$

Lin, Marcolli, Stoica + H.O. arxiv: 1412.1879

Lashkari, Rabideau, Sabella-Garnier, Van Raamsdonk, arxiv: 1412.3514

Lashkari, Van Raamsdonk, ar Xiv: 1508.0089

More on the quadratic perturbation:

Relative Entropy = Energy in Entanglement Wedge implies

Fisher Information = Canonical Energy
of Hollands and Wald

The positivity of Fisher information guarantees linear stability of AdS-Rindler wedge.

Relative Entropy = Energy in Entanglement Wedge

Positivity and monotonicity of the relative entropy

- -> Linearlized Einstein equations. arXiv: 1312.7856
 - Integrated positivity of Two arXiv: 1412.1879
 1412.3514
 - · Positivity of quasi-local energy avXiv: 1605.01075

Any low energy effective theory of a consistent ultraviolet complete quantum theory of gravity must satisfy these positive energy conditions.

How strong are these positive energy conditions?

Which low energy theories are ruled out by them?

Note: $S(\beta | \sigma)_{CF7} = S(\hat{\beta} | \hat{\sigma})_{bulk}$

Jafferis, Lewkowycz, Maldacena, Suh: 15/2.06431 Dong, Harlow, Wall: 1601.05416 Harlow: 1607.03901

Or, can we prove a new type of positivity
theorems for quasi-local energies?

C.f. Bekenstein bound (asini: 0804.2182

Swampland Question:

How to characterize an effective gravity theory that can emerge in a low energy approximation to a consistent quantum theory, such as string theory.

Constraints on Symmetry
Constraints on Moduli Space
Constraints on Calabi-Yau Topology
New Type of Positive Energy Theorems

String-Math 2018

Tohoku University, Sendai 18 - 22 June 2018

Strings 2018

OIST, Okinawa **25 - 29 June 2018**

We look forward to welcoming you in Japan in 2018.