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DYSON-SCHWINGER EQUATIONS

INVARIANCE OF (PATH) INTEGRAL

〈O1(x1) . . .On(xn)〉 =
1

Z

∫
Γ

DΦ e−
1
~S[Φ] O1(x1) . . .On(xn)

UNDER “SMALL” DEFORMATIONS
OF THE INTEGRATION CONTOUR

Φ −→ Φ + δΦ
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DYSON-SCHWINGER EQUATIONS

QUANTUM EQUATIONS OF MOTION

〈O1(x1) . . .On(xn)δS [Φ]〉 =

~
n∑

i=1

〈O1(x1) . . .Oi−1(xi−1)δOi (xi )Oi+1(xi+1) . . .On(xn)〉

♦
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DYSON-SCHWINGER EQUATIONS

WITH SOME LUCK

=

GOOD CHOICE OF (POSSIBLY NON-LOCAL) OBSERVABLES

Oi (x)

AND IN SOME LIMIT (CLASSICAL, PLANAR, ... )

THE DS EQUATIONS FORM A CLOSED SYSTEM

♦



♦

FOR EXAMPLE

~ −→ 0

CLASSICAL LIMIT

〈O1(x1) . . .On(xn)δS [Φ]〉 = ~ (. . .)→ 0

⇔ δS [Φ] = 0

♦
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GAUGE THEORY

Φ −→ A = Aµdxµ ∈ LieU(N)

1

~
S [Φ] −→ SYM [A] = − 1

4g 2

∫
R4

trFA ∧ ?FA

Oi (xi ) −→WR(γ) = trR Pexp

∮
γ

A

W(γ) =
1

N
〈W�(γ)〉

♦



♦

GAUGE THEORY: PLANAR LIMIT

N −→∞, g 2 → 0,

FINITE λ = g 2N

∆γW(γ) =
g 2

N
〈W�(γ)δSYM [A]〉 =

= λδγ=γ1?γ2W(γ1)W(γ2) +
1

N2
correctons

MAKEENKO-MIGDAL LOOP EQUATIONS

♦
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GAUGE THEORY: MATRIX MODEL

Φ ∈ LieU(N)

1

~
S [Φ] =

1

~
trV (Φ)

V (X ) = vpX p + vp−1X p−1 + . . .+ v1X + v0

O(x) =
1

N
tr�

(
1

x − Φ

)

♦
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MATRIX MODEL

PLANAR LIMIT: λ = ~N FIXED

~→ 0, N →∞

DS EQUATIONS =⇒ LOOP EQUATIONS

y(x)2 = V ′(x)2 + gp−2(x)

y(x) = 〈O(x)〉+ V ′(x)

gp−2(x) = DEGREE p − 2 POLYNOMIAL IN x

♦



♦

QFT PATH INTEGRAL INVOLVES SUMMATION

OVER TOPOLOGICAL SECTORS
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FOR EXAMPLE, IN GAUGE THEORY

Z =
∑
n∈Z

e inϑ
∫
An

[
DA

Vol(Gn)

]
e−SYM [A]

− 1

8π2

∫
trFA ∧ FA = n, A ∈ An
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NON-PERTURBATIVE DS EQUATIONS

IDENTITIES DERIVED BY

LARGE “DEFORMATIONS” OF THE PATH INTEGRAL CONTOUR

A ∈ An −→ A + δA ∈ An+1

GRAFTING A POINT-LIKE INSTANTON

♦
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COMPATIBILITY OF PERTURBATIVE

expansion in ~, g 2, . . .

AND NON-PERTURBATIVE CONTRIBUTIONS

expansion in e−
1
~ , e

− 1
g2 , . . .

Resurgence, trans-series, . . . A.Voros, J.Zinn-Justin, . . .
Exact β-functions in SYM, Novikov-Shifman-Vainshtein, Zakharov

♦
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TESTING GROUNDS
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SUPERSYMMETRIC

GAUGE THEORIES

SIGMA MODELS

♦
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N = 2 SUPERSYMMETRIC

FOUR DIMENSIONAL GAUGE THEORIES

TWO DIMENSIONAL SIGMA MODELS

♦
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N = 2 SUPERSYMMETRIC GAUGE THEORIES

VECTOR MULTIPLETS

A =
Φ

ψ λ
A

complex adjoint scalar
two Weyl adjoint fermions

gauge field

adjoint = Lie(G )

♦
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N = 2 SUPERSYMMETRIC GAUGE THEORIES

HYPERMULTIPLETS

in representation R ∈ Rep(G )

M =

ψ

M M̃

ψ̃†

two complex scalars, in R and R∗

two Weyl fermions, in R and R∗

♦
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CLASS OF SPECIFIC GAUGE THEORIES

♦
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N = 2 SUPERSYMMETRIC GAUGE THEORIES

QUIVER THEORIES

G = U(N1)× . . .× U(Nr )

R =
⊕
<i ,j>

(Ni , N̄j)
⊕
i

(Ni , M̄i )

♦



♦

N = 2 SUPERSYMMETRIC QUIVER THEORIES

MATTER IN FUNDAMENTAL

R 3 (Ni , M̄i ), Mi = multiplicity space

MATTER IN BI-FUNDAMENTAL

R 3 (Ni , N̄j), i 6= j

MATTER IN ADJOINT

R 3 (Ni , N̄i )

♦



♦
N = 2 QUIVER THEORIES

DATA

γ = oriented graph, s, t : Edgeγ → Vertγ

s(e) e t(e)
• −−−−−−−−−−−−−−−−−−→ •

G = ×i∈VertγU(Ni )

R =
⊕

e∈Edgeγ

Hom(Ns(e),Nt(e))
⊕

i∈Vertγ

Hom(Mi ,Ni )

♦
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N = 2 QUIVER THEORIES

PARAMETERS

MASSES

Mi ∈ End(Mi ), i ∈ Vertγ

me ∈ C, e ∈ Edgeγ

♦
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N = 2 QUIVER THEORIES

PARAMETERS

GAUGE COUPLINGS

τi =
ϑi
2π

+
4πi

g 2
i

AMPLITUDE OF INSTANTON IN THE U(Ni )

qi = exp 2πiτi , i ∈ Vertγ

♦
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N = 2 QUIVER THEORIES

N = 2 SUPERCONFORMAL FIXED POINT

IN THE UV

iff γ = A,D,E or Â, D̂, Ê

♦
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N = 2 ASYMPTOTICALLY CONFORMAL
QUIVER THEORIES

γ = A,D,E or Â, D̂, Ê

QUIVER GROUP Gγ

SIMPLE LIE (KAC-MOODY) GROUP

! NOT AN APPARENT SYMMETRY OF THE THEORY !

♦
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WE SHALL NOW SEE THAT

Gγ

MORE PRECISELY ITS QUANTUM DEFORMATION

Y (gγ),Uq(ĝγ), . . .

IS PRESENT AS A SYMMETRY PRINCIPLE
ORGANIZING THE DYSON-SCHWINGER EQUATIONS

♦
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N = 2 QUIVER THEORIES

SUBJECT TO DEFORMATIONS:

FOR BETTER CONTROL

♦



♦

N = 2 QUIVER THEORIES

Ω-DEFORMATION:

Φ −→ Φ + vµ∇µ

∇µ = ∂µ + Aµ

vµ∂m = ε1

(
x2∂x1 − x1∂x2

)
+ ε2

(
x4∂x3 − x3∂x4

)
♦



♦

N = 2 QUIVER THEORIES

Ω-DEFORMATION:

Generator R3 of the SU(2) R-symmetry group is shifted

R3 −→ R3 + JR3

where JR3 is the generator
of the SU(2)R ⊂

rotation group Spin(4) = SU(2)L × SU(2)R

♦



♦

N = 2 QUIVER THEORIES

NONCOMMUTATIVE DEFORMATION

R4 −→ R4
θ

xµ −→ x̂µ

[x̂µ, x̂ν ] = −iθµν

x̂µ ARE OPERATORS IN H

H = REPRESENTATION OF R4
θ

♦
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N = 2 THEORIES

SUBJECT TO Ω, θ-DEFORMATIONS

CAN BE MAPPED TO “MATRIX MODELS”
θ-N.Seiberg, 1999; Ω-NN, A.Okounkov, 2003

X̂µ = x̂µ + iθµνAν(x̂), (FA)µ′ν′θ
µµ′θνν

′
= [X̂µ, X̂ν ] + iθµν

Φ(x) −→ Φ̂ = Φ(x̂) +
1

2
Ω̃µνX̂µX̂ν

♦
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N = 2 THEORIES

SUBJECT TO Ω, θ-DEFORMATIONS

CAN BE MAPPED TO “MATRIX MODELS”
θ-N.Seiberg, 1999; Ω-NN, A.Okounkov, 2003

S −→ 1

4g 2

∑
µ<ν

TrH

(
[X̂µ, X̂ν ] + iθµν

)2
+

∑
µ

TrH

(
[X̂µ, Φ̂] + Ωµ

ν X̂ν
)(

[X̂µ, Φ̂†] + Ω̄µ
ν X̂ν

)
+

TrH[Φ̂, Φ̂†]2 + fermions

♦
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OBSERVABLES FOR DS EQUATIONS

OBSERVABLE Y (x)

IN FOUR DIMENSIONAL U(N) GAUGE THEORY

Y(x) ∼ detCN (x − Φ) ∼
N∏
α=1

(x − aα)

NAIVELY

♦
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OBSERVABLES FOR DS EQUATIONS

Y(x) IN FOUR DIMENSIONS

MORE PRECISELY

Y(x) =
DetH(x− Φ̂− ε1)DetH(x− Φ̂− ε2)

DetH(x− Φ̂)DetH(x− Φ̂− ε1 − ε2)

♦



♦

Y(x) =
DetH(x− Φ̂− ε1)DetH(x− Φ̂− ε2)

DetH(x− Φ̂)DetH(x− Φ̂− ε1 − ε2)

Φ̂ ∈ End(H)

RATIONAL FUNCTION OF DEGREE N

UNLIKE THE NAIVE detCN(x − Φ) IT HAS POLES

♦
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FOR QUIVER GAUGE THEORY

G = U(N1)× . . .× U(Nr )

G = ×i∈VertγU(Ni )

H =
⊕

i∈Vertγ

Hi , Φ̂ =
⊕

i∈Vertγ

Φ̂i

Y(x) −→ (Yi(x))i∈Vertγ

♦
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MAIN CLAIM

♦



♦

MAIN CLAIM

THERE EXIST

LAURENT POLYNOMIALS (SERIES FOR AFFINE γ)

Xi (x) = Yi (x + ε1 + ε2) + . . .

in Yj(x + linear combinations of me , ε1, ε2)’s, such that

〈 Xi (x) 〉 = POLYNOMIAL IN x
♦



♦

MAIN CLAIM

Xi (x) = Yi (x + ε1 + ε2) + . . .

COEFFICIENTS = PRODUCTS OF

qj ,Pj(x + linear combinations of me , ε1, ε2), j ∈ Vertγ

Pj(x) = detMj
(x −Mj)

ENCODE FUNDAMENTAL MASSES

♦
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WE CALL Xi (x)

THE FUNDAMENTAL qq-CHARACTERS

♦
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Xi (x) BECOME

THE FUNDAMENTAL CHARACTERS OF Gγ

IN THE LIMIT ε1, ε2 → 0

♦



♦

Xi (x) = g∞(x)−λiTrVi
g(x)

g(x) =
∏

j∈Vertγ Yj(x)α
∨
j (qjPj(x))−λ

∨
j ∈ CGγ

ε1, ε2 → 0 NN, V.Pestun, 2012

♦
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THE DS EQUATIONS IN THE LIMIT ε1, ε2 → 0

BECOME ALGEBRAIC EQUATIONS

Xi (x) = g∞(x)−λiTrVi
g(x) = POLYNOMIAL IN x

SEIBERG-WITTEN GEOMETRY
NN, V.Pestun, 2012

♦
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IN THE LIMIT ε2 → 0, ε1 = ~ FINITE

Xi (x) BECOME
NN, V.Pestun, S.Shatashvili, 2013

THE FUNDAMENTAL q-CHARACTERS OF Y (gγ)
H.Knight

FIVE DIMENSIONAL THEORY ON S1 × R4

PRODUCES q-CHARACTERS OF Uq(ĝγ)
E.Frenkel, N.Reshetikhin

♦
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GENERAL ε1, ε2 CASE

USE NAKAJIMA’S QUIVER VARIETIES

Mγ(w, v)

♦



♦

NAKAJIMA VARIETY

MATHEMATICALLY

Mγ(w, v) =
T ∗
(⊕

e∈Edgeγ Hom(Vs(e),Vt(e))
⊕

i∈Vertγ Hom(Vi ,Wi )
)

//×i∈Vertγ GL(Vi )

♦
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NAKAJIMA VARIETY

PHYSICALLY

Mγ(w, v) =

HIGGS BRANCH OF THE N = 4
THREE DIMENSIONAL QUIVER GAUGE THEORY

WITH GAUGE GROUP

Gv = ×i∈VertγU(Vi )

wi FUNDAMENTALS FOR U(Vi )
BI-FUNDAMENTALS IN (Vs(e),V

∗
t(e))

♦
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FORMULA FOR qq-CHARACTERS

Xw(x) =
∑

v

∏
i∈Vertγ

qvii

∫
Mγ(w,v)

e−ε2(TMζ(v,w))I [F ]

WHERE

I [F ] =
∏

i∈Vertγ

∏
κ

Pi (x + νi ,κ)

∏
κ+

Yi (x + ξ+
i ,κ+

)∏
κ−

Yi (x + ξ−i ,κ−)

Ch(Vi ) =
∑
κ

eνi,κ ,Ch(Ci ) =
∑
κ+

e
ξ+
i,κ+ −

∑
κ−

e
ξ−i,κ−

Ci = TAUTOLOGICAL COMPLEXES ON Mγ(w, v)

♦
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FORMULA FOR qq-CHARACTERS

Xw(x) = PARTITION FUNCTION

OF A POINT-LIKE DEFECT Dw(x)

FOR SOME (ALL?) THEORIES

Dw(x) CAN BE ENGINEERED

USING INTERSECTING BRANES

♦
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EXAMPLES: U(N) THEORIES

A1 CASE: Nc = N , Nf = 2N

FUNDAMENTAL qq-CHARACTER

X1(x) = Y (x + ε1 + ε2) + qP(x)Y (x)−1

♦



♦

EXAMPLES: U(N) THEORIES

A1 CASE: Nc = N , Nf = 2N

GENERAL qq-CHARACTER

~ν = (ν1, . . . , νw)

X~ν(x) =
∑

[w]=IqJ

q#J
∏

i∈I ,j∈J

(νi − νj + ε1)(νi − νj + ε2)

(νi − νj)(νi − νj + ε1 + ε2)
×

∏
j∈J

P(x + νj)

Y (x + νj)
×
∏
i∈I

Y (x + ε1 + ε2 + νi )

♦
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EXAMPLES: U(N) THEORIES

Â0 CASE: N = 2∗ U(N) THEORY

µ MASS OF THE ADJOINT HYPER

♦
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FUNDAMENTAL qq-CHARACTER

X1(x) =
∑
λ

q|λ|
∏
�∈λ

(µh� + (ε1 + ε2)a� + ε1)(µh� + (ε1 + ε2)a� + ε2)

(µh� + (ε1 + ε2)a�)(µh� + (ε1 + ε2)(a� + 1))

×
∏

�∈∂+λ

Y (x + σ� + ε1 + ε2)

×
∏

�∈∂−λ
Y (x + σ�)−1

♦
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a�, l�, h� are the arm-length, the leg-length and the hook-length
of the box � = (i , j) ∈ λ

a� = λi − j , l� = λtj − i , h� = a� + l� + 1,

σ� = µ(i − j) + (ε1 + ε2)(1− j)

♦
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APPLICATIONS

BPS/CFT CORRESPONDENCE

NN, 2002-2004

Correlators of chiral observables
in four dimensional supersymmetric theories
are holomorphic blocks (form-factors)

of some conformal field theory
(or a massive integrable deformation thereof)

in two dimensions

♦
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APPLICATIONS

THE NONPERTURBATIVE DS EQUATIONS

CAN BE USED TO DEMONSTRATE

♦
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Z-FUNCTIONS

OF A-TYPE QUIVER THEORIES

FOR SPECIAL MASSES

OBEY THE BPZ-TYPE EQUATIONS
=⇒ Alday-Gaiotto-Tachikawa dictionary

♦
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Z-FUNCTIONS

IN THE PRESENCE OF SURFACE DEFECTS
Yi -observables fraction: Yi → Yi ,α, α = 1, . . . , ni

OF A-TYPE QUIVER THEORIES

OBEY THE KZ-TYPE EQUATIONS
Use Nakajima realization, cf. Kanno-Tachikawa

♦
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CONCLUSIONS/SPECULATIONS

THE Gγ SYMMETRY CAN BE SEEN

IN THE II STRING REALIZATION OF GAUGE THEORY

YANGIAN Y (gγ) AND Uq(ĝγ) IN STRING THEORY?
SHc degenerate DAHA of S. Kanno, Y. Matsuo, H. Zhang?

♦
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CONCLUSION/SPECULATION

GRAVITATIONAL

NON-PERTURBATIVE DS EQUATIONS?

NON-LINEAR WHEELER-DE WIT EQUATION?

SYMMETRY OF THE LANDSCAPE?
♦



♦

CONCLUSION/SPECULATION

TOPOLOGICAL STRING(M-THEORY)

NON-PERTURBATIVE DS EQUATIONS?

qq-characters vs. q, t-characters
Nakajima, Frenkel-Hernandez?

♦
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