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PREFACE

The aim of this talk is to describe an interesting
protected quantity I in four-dimensional N = 2
supersymmetric field theory.

I is a generating function which counts BPS
states in the Hilbert space of the theory on
spatial R3, and which has various nice
geometric properties.

We studied I in joint work with Sergei
Alexandrov, Greg Moore and Boris Pioline.



N = 2 THEORIES

Fix an N = 2 SUSY QFT in d = 4.

Such a theory has a moduli space of vacua. We
work on the Coulomb branch. At generic points
u, the IR physics is abelian gauge theory. At
discriminant locus, this description can break
down. [Seiberg-Witten]



N = 2 THEORIES

Particles of electromagnetic/flavor charge γ
obey a BPS bound

M ≥ |Zγ|

where Zγ(u) is the central charge, depending on
point u of Coulomb branch.

Those with
M = |Zγ|

are called BPS.



BPS COUNTS IN N = 2
BPS particles of charge γ are “counted” by
second helicity supertrace

Ω(γ; u) = −1
2

TrH1
R3,γ

(−1)FJ2
3

e.g. BPS hypermultiplet of charge γ contributes
Ω(γ; u) = 1, BPS vector multiplet Ω(γ; u) = −2,
and so on.
The Ω(γ; u) are protected by supersymmetry,
but nevertheless can jump at certain walls in the
Coulomb branch, where BPS particles are only
marginally stable.



BPS COUNTS IN N = 2
A fundamental example: N = 2 pure SU(2)
super Yang-Mills. [Seiberg-Witten]

A “simple” answer (fits on this slide).



BPS COUNTS IN N = 2

In the last few years there has been a lot of
progress in methods for computing Ω(γ; u):

I Wall crossing [Denef-Moore,
Kontsevich-Soibelman, Gaiotto-Moore-AN,
Cecotti-Vafa, Manschot-Pioline-Sen, ...]

I Quivers [Denef,
Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa,
Cecotti-del Zotto, ...]

I Spectral networks [Gaiotto-Moore-AN,
Maruyoshi-Park-Yan, ...]



BPS COUNTS IN N = 2
One thing we’ve learned: field theory BPS
spectra are more intricate than we thought!
There can be exponential towers of BPS
threshold bound states,

Ω(nγ) ∼ naecn

(e.g. this happens already in pure SU(3)
Yang-Mills; similar growth seems to occur in the
Minahan-Nemeschansky E6 theory).
[Galakhov-Longhi-Mainiero-Moore-AN, Hollands-AN in
progress]
Moreover, the pattern of walls where Ω(γ) jump
can be extremely complicated.



GENERATING FUNCTION

Another way to study the Ω(γ; u): try to
organize them into a generating function with
some physical meaning.
Simplest try would be to introduce potentials θi
and write

F(u, θi) =
∑
γ

Ω(γ; u)eiθiγ
i

But then F would jump at walls of marginal
stability. Since the theory has no phase
transition (we think), physical observables
should be continuous.



CFIV INDEX
In two-dimensional massive N = (2, 2) theories,
such a generating function does exist:
CFIV index [Cecotti-Fendley-Intriligator-Vafa]

Qij = lim
L→∞

β

L
TrHij(−1)FFe−βH

Expanding around β →∞,

Qij ∼ µ(i, j)
√
β|Zij|e−β|Zij|

where µ(i, j) is an index counting BPS solitons
between vacua i and j, and |Zij| is their mass.



CFIV INDEX

Around β →∞,

Qij ∼ µ(i, j)
√
β|Zij|e−β|Zij|

As we vary parameters, µ(i, j) can jump. So the
asymptotics of Qij as β →∞ are not smooth.

Nevertheless, Qij is a nice smooth function of
parameters!

Key is contribution from 2-particle states: there
is a jump in this contribution too, which cancels
the jump in the 1-particle sector.



R3 INDEX

There is a quantity in four-dimensional N = 2
theories which seems to be an analogue of the
two-dimensional CFIV index.
[Alexandrov-Moore-AN-Pioline]

I = I(u, β, θi)

a single function, depending on:
I Coulomb branch modulus u,
I “temperature” β,
I potentials θi dual to components γi of EM

charge γ.



LINE DEFECT VEVS

Next, a formula for I. To state it, we need some
geometric preliminaries.



CIRCLE COMPACTIFICATION
Compactify 4d to 3d on S1

β, dualize gauge fields
to scalars. Get 3d sigma model in IR.
Fields: Coulomb branch scalars from 4d, plus
e/m Wilson lines θi of the abelian gauge fields
around S1

β.

Thus sigma model target is a torus fibrationM
over the Coulomb branch of the 4d theory.



CIRCLE COMPACTIFICATION

M has singular fibers, above the loci in the 4d
Coulomb branch where the abelian gauge
theory breaks down.

SUSY of the 3d theory saysM is hyperkähler.



CIRCLE COMPACTIFICATION

The index I is best thought of as a function on
M; in particular, it extends even to the singular
fibers.
The torus fiber coordinates θi will play the role
of the potentials which enter into I.



LINE DEFECT VEVS
In the theory on R3 × S1

β, vevs of SUSY line
defects wrapped on S1

β admit a universal
expansion, of the form [Gaiotto-Moore-AN]

〈L(ζ)〉 =
∑
γ

Ω(L, γ; u)Xγ(ζ)

The coefficients Ω(L, γ; u) ∈ Z count framed BPS
states of charge γ. The parameter ζ ∈ C× keeps
track of which SUSY the defect preserves.
The universal functions Xγ(ζ) are a local
coordinate system onM; vevs of “IR line
defects”; we will build I out of these.



A FORMULA FOR THE INDEX

We define

I = −4π2β2i〈Z, Z̄〉 −
∑
γ

Ω(γ)|Zγ|Iγ,

where

Iγ =

∫ ∞
−∞

dt cosh t log
(
1−Xγ(−et+i arg Zγ)

)
.

Looks mysterious, but engineered to have the
properties we want!



R3 INDEX

We can compute the asymptotics of I as β →∞,
using known properties of the functions Xγ(ζ).

More precisely consider coefficient of Fourier
mode eiθiγ

i
. As β →∞ it counts 1-particle BPS

states of charge γ,

I1(γ) ∼ Ω(γ)× eiθiγ
i
√
β|Zγ|e−β|Zγ |



CONTINUITY

As β →∞

I1(γ) ∼ Ω(γ)× eiθiγ
i
√
β|Zγ|e−β|Zγ |

Nevertheless, I is smooth across walls where
Ω(γ) jumps.

A direct proof of this uses dilogarithm
identities, arising in “semiclassical limit” of the
refined wall-crossing formula obeyed by the
BPS spectrum. [Kontsevich-Soibelman,
Dimofte-Gukov-Soibelman, Gaiotto-Moore-AN,
Cecotti-Vafa, Alexandrov-Persson-Pioline]



GEOMETRIC INTERPRETATION, II

Suppose the 4d theory which we consider is
conformal.

Then I is a Kähler potential on the spaceM.
[Alexandrov-Roche]

(More precisely, sinceM is hyperkähler, it has
an S2 worth of complex structures; I is a Kähler
potential for a circle’s worth of these complex
structures.)



GEOMETRIC INTERPRETATION, III

Suppose the 4d theory which we consider is of
class S, associated to Riemann surface C and Lie
algebra g. ThenM is space of vacua of twisted
5d SYM on C× R3 (Hitchin system).

In this language I becomes very simple:

I = i
∫

C
Tr(ϕϕ†)

where ϕ is twisted adjoint scalar of 5d SYM.



GEOMETRIC INTERPRETATION, III

I = i
∫

C
Tr(ϕϕ†)

Thus, in theories of class S, the quantum
observable I (summing up the whole BPS
spectrum) can be computed by a purely classical
formula in 5d SYM.

We proved this in a rather roundabout way;
there should be a simple and direct argument.



QUESTIONS

I What is a more conceptual definition of I?
Can we prove that it is

I = lim
V→∞

1
V

TrHR3 (−1)FJ2
3eiθiγ

i−βH

(at least the 1-particle contribution matches,
with an appropriate regulator)? cf.
[Cecotti-Fendley-Intriligator-Vafa]

I How is I related to more familiar protected
quantities in N = 2 theories, such as
instanton partition functions? [Nekrasov]



QUESTIONS

I Recently [Gerchkovitz-Gomis-Komargodski]
showed that for conformal N = 2 theories
the S4 partition function is a Kähler
potential for the Zamolodchikov metric on
the conformal manifold.

The index I is something like an R3 × S1
β

partition function and is also a Kähler
potential — but on the IR moduli spaceM
instead of the conformal manifold. Are
these two stories somehow related?



QUESTIONS

I The Xγ(ζ), which entered our formula for I,
are solutions of integral equations which
look like 2-d thermodynamic Bethe ansatz.

Xγ(ζ) = X sf
γ (ζ) exp

∑
γ′
〈γ, γ′〉Ω(γ

′
)

1

4πi

∫
ZγR−

dζ′

ζ′
ζ′ + ζ

ζ′ − ζ
log(1− Xγ′ (ζ

′
)



X sf
γ (ζ) = exp

(
βZγ

ζ
+ iθiγ

i
+ βZ̄γζ

)

Why 2-d? We are studying a 4-d system!

I is the TBA free energy. Can this help us
understand why the TBA is there?



Thank you!



SPECTRAL NETWORKS

The idea of spectral networks is to study BPS
states indirectly, through their interaction with
surface defects.

In principle it can be done in any theory, if we
have enough surface defects and understand
them well enough.



SPECTRAL NETWORKS

In theories of class S, spectral networks count
webs of BPS strings of the (2, 0) theory on C.

For simple webs, the Ω turn out to be simple:

12

23 31

For A1 theory this recovers results of
[Klemm-Lerche-Mayr-Vafa-Warner]



BPS COUNTS IN E6 SCFT

A recent example [Hollands-AN, in progress]:
computation of part of the BPS spectrum of
N = 2 SCFT with E6 global symmetry
[Minahan-Nemeschansky]. (“Part” means we
consider only some directions in the charge
lattice.)

This theory is non-Lagrangian (today).

Coulomb branch is 1-dimensional, so
superconformal invariance implies the
spectrum at any point is the same as at any
other.



BPS COUNTS IN E6 SCFT
We use spectral networks and the class S
realization of the E6 theory: g = su(3), C = CP1

with 3 punctures. [Gaiotto]

The construction makes manifest only
SU(3)× SU(3)× SU(3) ⊂ E6 but the spectrum
comes out “miraculously” organized into E6
representations!



BPS COUNTS IN E6 SCFT
For example, along one ray in charge lattice, the
degeneracies are controlled by this network:

Ω(γ) = 27
Ω(2γ) = 2× 27
Ω(3γ) = 3× (78⊕ 1⊕ 1)

Ω(4γ) = 4× (351⊕ 27⊕ 27) · · ·



BPS COUNTS IN E6 SCFT
But there are infinitely many such networks
contributing; and so far we have to deal with
them one by one!
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