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Quantum Entanglement

Einstein-Podolsky-Rosen Paradox:

* properties of pair of photons connected,
no matter how far apart they travel

“spukhafte Fernwirkung” = vericaly
Spooky action at a distance

1
V2

Quantum Information: entanglement becomes a resource for
(ultra)fast computations and (ultra)secure communications

)= —= (11 +141))

Condensed Matter: key to “exotic” phases and phenomena,
e.g., quantum Hall fluids, unconventional superconductors,
guantum spin fluids, . . . .



Quantum Entanglement

Einstein-Podolsky-Rosen Paradox:

* properties of pair of photons connected
no matter how far apart they travel

“spukhafte Fernwirkung” = vericaly
spooky action at a distance

1

[9) 7

(110 +141))

compare: i) = 3 (111) +[11) + 141} +11) )

1

- 5( ) + |¢>) ® (IT) + H)) == No Entanglement!!

1
[9") = §(|TT> + 1)+ HT>@¢¢>) ==} Entangled!!



Entanglement Entropy:

» general diagnostic: divide quantum system into two parts and
use entropy as measure of correlations between subsystems

» procedure:
e divide system into two subsystems, eg, A and B

o trace over degrees of freedom in subsystem B
e remaining dof in A are described by a density matrix pA
« calculate von Neumann entropy: Szz = =T [pa log pa]

) = (1T +141)) —> p=Tra (W)(6) = 5 (4 + 1)1

—> S =log?2

compare: i) = 3 (111) +[11) + 141} +11) )

1

=S(IN+1)) @ (1) +[1) ) m=Ne-£nS,, = Cent!

1
67y = S(111) 4114+ )OI ) ) mrEnSs s = log2



New Dialogues in Theoretical Physics:

Particle Physics

Statistical Mechanics
Quantum Field Theory

Holographic RG Flows

Many Body Theory

String Theory

Quantum
Information

Condensed Matter Theory Quantum Gravity

Holographic
Entanglement Entropy



Entanglement Entropy 2:

* in the context of holographic entanglement entropy, Sgg IS
applied in the context of quantum field theory

 in QFT, typically introduce a (smooth) boundary or entangling
surface 2. which divides the space into two separate regions

e integrate out degrees of freedom in “outside” region
e remaining dof are described by a density matrix pa

—> calculate von Neumann entropy: S, = =T [pa log p4]

(t = constant)




Entanglement Entropy 2:
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = —T1r [pa log pa|

(t = constant)

e result is UV divergent!
e must regulate calculation: ¢ = short-distance cut-off

RI~2 R4 d = spacetime dimension
+ Co 5d1 + -

As
5d—2

o careful analysis reveals geometric structure, eg, S = ¢ + .-



Entanglement Entropy 2:
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Sp, = —1 [pa log pa]

(t = constant)

e must regulate calculation: ¢ = short-distance cut-off

RI~2 R4 d = spacetime dimension
§d—2 T G2 Jd—A4 T

* leading coefficients sensitive to details of regulator, eg, 0 — 20
e find universal information characterizing underlying QFT in

subleading terms, eg, g — ... +1Og (R/S) + -

S:CO




(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

r = o0
AdS boundary

boundary
conformal field
theory

l gravitational

AdS bulk potential/redshift

spacetime
Ay
S(A) = 7kt = oo!!
ov—z 4GN
« “UV divergence” because area integral &\nds to r =00
looks like

BH entropy!



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

r = o0
AdS boundary

TZRQ

cut-off in boundary CFT:
4 5 = L?/Ry

AV 41 As:
S(A) = ext —— =~ —

ov=x 4G N Gy 0

« “UV divergence” because area inters to r = 00
* as uetuwialmh@dgee( L%%'ﬁ‘},,%ﬁ )surfac at large radius: 11 = R

—(COUNB HYktance cut-off in boundary theory{‘%&iﬁaﬂb

regulator surface




(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

r = o0
AdS boundary

TZRQ

cut-off in boundary CFT:
2
4 5 = L?/R,
general expression (as desired):

S(A) ~ co(R/5)T2 4 co(R/O)TH 4 -

- 4cq_olog(R/d) + - -+ (deven)
__|_. Cd—2 —|—°°°. (d odd)

regulator surface

universal contributions



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

Ay .
S(A) = ext —— conjecture
ov —x 4G N
Extensive consistency tests:
. G L1 Ay
1) leading contribution yields “area law” S ~ G 502 +
2) recover known results for d=2 CFT: (Holzhey, Larsen & Wilczek)
C "y (Calabrese & Cardy)
s = ¢ log| — sin —
3 o) C

3) S(A) = S5(4) in a pure state
—> A and A both yield same bulk surface V

4) for thermal bath: S(A4) O Siperm = a T4 x volume

s yr



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

A
S(A) = ext —— conjecture
ov —x 4G N

Extensive consistency tests:

5) strong sub-additivity: S(AUB) +S(ANB) < S(A)+ S(B)
(Headrick & Takayanagi)
[ further monogamy relations: Hayden, Headrick & Maloney]

6) for even d, connection of universal/logarithmic contribution in
Sge to central charges of boundary CFT, eg, in d=4

. : : 1 . :
Suni = log(R/6) — o / d?zVh [C(C”kl ix §JJ-Z — KIbKe 4 inLaKg b) —a R]
(Hung, RM & Smolkin)

7) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RM, RM & Sinha)



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

S(A) = ext Av

— —_—
ov =x 4G N

Extensive consistency tests: ——> new proof!!!
(Lewkowycz & Maldacena)

* generalization of Euclidean path integral calc’s for Sgy,, extended
to “periodic” bulk solutions without Killing vector

 for AdS/CFT, translates replica trick for boundary CFT to bulk
AT =21 — 2rn —> log Z(n) =logTr [p"] = — I rav(n)
—> S =-nd,[logZ(n) —nlog Z(1)]|

n=1
» atn ~ 1, linearized gravity eom demand: K* = h"” K¢ =0
—> 7 shrinks to zero on an extremal surface in bulk

« evaluating Einstein action yields S = A/4G y for extremal surface



Topics currently trending in Holographic Sgg:
(Ryu & Takayanagi 06 ——> 111 cites in past year of total of 317)

o themnmuxtjyraamd ¢ propeeses 6f Siorfexmbecitatdistates
(BliBttatthairgayaN dlrakik Takaysaagis UsEjin; . . .)

* “entanglement tsunami” — probe of holo-quantum quenches
(Liu & Suh)

 probe of large-N phase transitions at finite volume (Johnson)

» phase transitions in holographic Renyi entropy
(Belin, Maloney & Matsuura)
 holographic Sge in higher spin gravity
(Ammon, Castro & Igbal; de Boer & Jottar)
* holographic Sge beyond classical gravity
(Barrella, Dong, Hartnoll & Martin)

 probing causal structure in the bulk
(Hubeny, Maxfield, Rangamani & Tonni)

 holographic Renyi entropy for disjoint intervals (Faulkner; Hartman)
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Zamolodchikov c-theorem (1986):

 renormalization-group (RG) flows can seen as one-parameter
motion d 9
N OF e
in the space of (renormalized) coupling constants{y’, i =1,2,3,---}
with beta-functions as “velocities”

e for unitary, renormalizable QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constants c(g):

. . d
1. monotonically decreasing along flows: —c(g) < 0

dt
2. “stationary” at fixed points ¢' = (¢%)" :
T/ x\ __ , N a _

3. at fixed points, it equals central charge of corresponding CFT
c(g”) = c



with Zamolodchikov's framework:

| R\/ﬁ,

/,/\

g1

BECOMES



with Zamolodchikov's framework:

Consequence for any RG flow in d=2: Cyy > Cig



-theorems in higher even dimensions??

d=2:

Iy =

 in 4 dimensions, h
e do any of these obey a similar “c-theorem” u
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upeCH7P7 and By =

ave three central charges: ¢, a, a’
nder RG flows?

. a’ is scheme dependent (not globally defined)

-theorem: the

re are numerous counter—examples

Cardy’s conjecture (1988):
-theorem: for any RG flow in d

=4, Quy > QiR

e nuMerous nontrivial examples, eqg, perturbative fixed points

J

ack & Osborn), SUSY gauge theories (Anselmi et al; Intriligator & Wecht)
« JP: perhaps QI can provide insight into c-theorems for odd dim’s



(Casini & Huerta ‘04)
Entanglement proof of c-theorem:

 c-theorem for d=2 RG flows can be established using unitarity,
Lorentz invariance and strong subaddivity inequality:

S(XUYUZ)—S(XUY)—SYUuUZ)+S5Y)<0

» define: C'(£) = 30 9,5(¢)

X Z
— @gC(f) <0 —
e for d=2 CFT: S(¥) = c log(£/6) + ag (Holzhey, Larsen & Wilczek)
3 (Calabrese & Cardy)

—> Cepr(f) =c

e hence it follows that: | Cyv > Cir
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(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

. Freedman, Gubser, Pilch & Warner, hep-th/9904017
Holographic RG flows: ( P )

1 5%
I= g7 [¢2v=a | R- 5007 - V(o)

e imagine potential has stationary points giving negative A

12
EE— V((bi,cr) — _ﬁaf

. consider metric: ds® = ") (—dt? + dx? + dx3 + dz3) + dr?

« at stationary points, AdSg vacuum: A(r) = r/L with L =L/,

 HRG flow: solution starts at one stationary point at large radius
and ends at another at small radius — connects CFT,, to CFT

>
¢1,c7‘ ¢




(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

. Freedman, Gubser, Pilch & Warner, hep-th/9904017
Holographic RG flows: ( P )

2

, . _ T
o for general flow solutions, define: a(r) = EA()?
37 2
"(r) = — A'(r) = — T —T",.) >0
@l(r) 3 A (r)s (r) 3 A () (" ) >
Einstein equationsJ null energy conditionJ

(T 00 > 0)

- at stationary points, a(r) — a* = 7% L /¢% and hence

[abv > CL}R]

» using holographic trace anomaly: a* = a
(e.g., Henningson & Skenderis)

—> supports Cardy’s conjecture
- for Einstein gravity, central charges equal(a = ¢) : cuv = CIR



(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
Holographic RG flows:

1= [ @t v=g | R- S92 - Vo)
204 2
e same story is readily extended to (d+1) dimensions
defini md/?
+aeining: ea(r) = )y e ()™
/ (d B 1)7Td/2 1 7Td/2 t r
= — A - — 1" =T r) 0
. T am "~ T ey T2
Einstein equations J null energy conditionJ

» at stationary points, a(r) — a* = 7%/?/T'(d/2) (L/¢p)?~ ' and so

[aav > Q?R]

« using holographic trace anomaly: a™ o central charges
(e.g., Henningson & Skenderis)

for even d! what about odd d?



Improved Holographic RG Flows:

 add higher curvature interactions to bulk gravity action

—— provides holographic field theories with, eg, a # ¢
so that we can clearly distinguish evidence of a-theorem

(Nojiri & Odintsov; Blau, Narain & Gava)

e construct “toy models” with fixed set of higher curvature terms
(where we can maintain control of calculations)

What about the swampland?

e constrain gravitational couplings with consistency tests
(positive fluxes; causality; unitarity) and use best judgement

e ultimately one needs to fully develop string theory for
Interesting holographic backgrounds!

o “if certain general characteristics are true for all CFT’s, then
holographic CFT’s will exhibit the same features”



Toy model: (RM & Robinsion; RM, Paulos & Sinha)

I = %3 d5x\/_[%'+R+L@x4+L @25]

W|th X4 — RadeRabcd — 4RabRab + R2

1
25 = RO'R7JRS+ o (21Rapea 'R — T2Ropea R, R

+120Rupea R*“R" + 144R )RR — 132R R R + 15R?)
« three dimensionless couplings: L/lp, \, u

e again, gravitational eom and null energy conditon yield:

(RM & Sinha)
[CLUV > CL[R]
T2 I3
where a = —7 1 (1 =6\ foc +91f%) €—— central charge @
Joo© BP of boundary CFT

with o — foo + A2 +ufs =0

 toy model supports for Cardy’s conjecture in four dimensions



(RM & Sinha)
o for holographic RG flows with general d, find:

(GZ)UV > (GZ)IR

d/2pd—1 2(d — 1 d—1
where o = — — (1 - (d 3 ))‘foo — 3(d = ):ufgo>
[(d/2)f (5 - N

with o — foo + Af2 4+ ufs =0

e trace anomaly for CFT’s with even d: (Deser & Schwimmer)

(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q
o verify that we have precisely reproduced central charge
‘ a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

—> agrees with Cardy’s conjecture
What about odd d??



(Casini, Huerta & RM; RM & Sinha)
Holographic Entanglement Entropy:

e S for CFT in d-dim. flat space and choose S92 with radius R

e conformal mapping relate to thermal entropy on H = R X H4-1
with =~ ~ 1/R? and T=1/21tR

 holographic dictionary: thermal bath in CFT = black hole in AdS

SEE — Stherma,l — Shom’zon

3
 desired “black hole” is a hyperbolic foliation of AdS 83
SNS—

 bulk coordinate transformation implements
desired conformal transformation on boundary

« apply Wald’s formula (for any gravity theory) for horizon entropy:
universal contributions:

S = ... + (—)%_146@ log(2R/0) + -+ forevend

d—1

4+ (5T 2may 4+ - forodd d



C-theorem conjecture: (RM & Sinha)

* identify central charge with universal contribution in entanglement
entropy of ground state of CFT across sphere S92 of radius R:

i (—)%_1 4a} log(2R/5) foreven d
Sunz'v — 7 g1

8 (—) 2 2ma;j for odd d
(any gravitational action)

o for RG flows connecting two fixed points

* b
(@d)yy 2 (aa)rr (“unitary” models)

——> unified framework to consider c-theorem for odd or even d
—> connect to Cardy’s conjecture: a;; = A for any CFT in even d



F-theorem: (Jafferis, Klebanov, Pufu & Safdi)

e examine partition function for broad classes of 3-dimensional
guantum field theories on three-sphere (SUSY gauge theories,
perturbed CFT’s & O(N) models)

e in all examples, F= - log Z(S3®)>0 and decreases along RG flows
—> conjecture: Fyy > Frgr

e also naturally generalizes to higher odd d

» coincides with entropic c-theorem (Casini, Huerta & RM)
 focusing on renormalized or universal contributions, eg,

F3 = — log Z\ﬁmte = —Suniv = 27 a3 .
e generalizes to general odd d:

d+1

F; = —log Z\fz.mte = —Suniv =(—) 2 2ma}.



Casini & Huerta ‘12

Entanglement proof of F-theorem: (Casint & Huerta '12)

* F-theorem for d=3 RG flows established using unitarity, Lorentz
iInvariance and strong subaddivity

Z S(Xi) = S(UX;) + 5(Ugjy (X 00 X)) + 5 (Ugjeg (X NX; NXR)) + .+ 5(MA)

e geometry more complex than d=2: consider many circles
Intersecting on null cone

(no corner contribution from intersection in null plane)

» define: C(R) = RS'(R) — S(R) ——> 0rC(R) <0

e for d=3 CFT:S(R) = co R — 2ma3 —— Cepr(R) = 27as
* hence it follows that: [GS]UV > [CLB]IR



(Liu & Mezei)
“Renormalized” Entanglement Entropy:

* Sce Is UV divergent, so must take care in defining universal term

o divergences determined by local geometry of entangling surface
with covariant regulator,

R d—1
S = co(pi9) sz T C2(Mz'5)5d—_4 + o+ (—)7 2maa(pd) + O(6/R)

 can isolate finite term with appropriate manipulations, eg,
d=3: S3(R) = RS'(R) — S(R) <«—— c-function of

Casini & Huert
d=4: 54(R) — RZS//(R) L RS/(R) asini uerta

» unfortunately, holographic experiments indicate S;(R) are not
good c-functions for d>3



(Casini, Huerta, RM & Yale)
“Renormalized” Entanglement Entropy 2:

* Sce Is UV divergent, so must take care in defining universal term

e mutual information is intrinsically finite and so offers alternative
approach to regulate Sg¢

I(A,B)=S(A)+ S(B)—S(AUB

. 3 | R&/r

* With R1,2=Ri§ and B> ¢ >0, R2
I(A,B) =2 (g—kb) R — 4Amas + O(¢)

* choice ensures that a; is not polluted by UV fixed point

» naturally extends to defining a4 in higher odd dimensions

o for d=3, entropic proof of F-theorem can be written in terms
of mutual information



(Komargodski & Schwimmer; see also: Luty, Polchinski & Rattazzi)

a-theorem and Dilaton Effective Action

) . (Schwimmer
» analyze RG flow as “broken conformal symmetry & Theisen)

 couple theory to “dilaton” (conformal compensator) and organize

effective action in terms of §,, = e *"g,,

diffeo X Weyl invariant: g, — €*°g,, T —T+0
o follow effective dilaton action to IR fixed point, eg,
Sanoma,ly — —da / fE'j‘.:f:\/—_g(TE._i + 4(R* — %g””f?)é;ﬂ_;rﬁy*r = —'1(3?)213 T+ Q{fi)‘T}'l)
e With g — 1, only contribution to 4pt amplitude with null dilatons:
Sanomaly = 20a / d*x (37)4

e dispersion relation plus optical theorem demand: da > 0

oa = ayv — arRr:ensures UV & IR anomalies match




(Solodukhin)
a-theorem, Dilaton and Entanglement Entropy

» find anomaly contribution for S

1 - ;
Sanomaly —oa / d'x vV — (TEi Lz -l(R'm — —gM¥ R)C}“Td i —1(3?)‘3]3 T + Q{E}T}'l)

/

[SEE]anom: —5a/d20 [ 827') ]

e for conformally flat background and flat entangling surface,

—— (Serlyn = 5 00 [ PV (057’
by

e can express coefficient in terms of spectral density for (T'(z)T'(y))

1 > du
Sa = — 0

e analogous to effective-dilaton-action analysis for d=2
(Komargodski)



Questions:

 how much of Zamalodchikov’s structure for d=2 RG flows
extends higher dimensions?

—— d=3 entropic c-function not always stationary at fixed points
(Klebanov, Nishioka, Pufu & Safdi)

e can c-theorems be proved for higher dimensions? eg, d=5 or 6

—> dilaton-effective-action would require subtle refinement for d=6
(Elvang, Freedman, Hung, Kiermaier, RM & Theisen; Elvang & Olson)

 does scale invariance imply conformal invariance beyond d=27
(Nakayama)

—> at least, perturbatively in d=4 (Luty, Polchinski & Rattazzi)
o further lessons for RG flows and entanglement from holography?
—> translation of “null energy condition” to boundary theory?

» what can entanglement entropy/quantum information really say
about renormalization group and holography?
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(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Ay .
S(A) = ext —~— conjecture
ov —x 4G N
Extensive consistency tests:
. Lo L1 As
1) leading contribution yields “area law” S =~ o 5 4.
N

2) recover known results of Calabrese & Cardy

S = Elog — sin —

3 70 C

(also result for thermal ensemble)

(' = circumference



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:
Ay

— conjecture
ov =x 4G N |

Extensive consistency tests:

3) S(A) = S(4) in a pure state
—> A and A both yield same bulk surface V

A

cf: thermal ensemble # pure state -
horizon in bulk —> S(A) # S(A) A

AdS
boundary



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:
Ay

— conjecture
ov =x 4G N |

Extensive consistency tests:

4) for thermal bath: S(A) O Siperm = T4 x volume

A ]‘ Crsuyr

H(AdS)

horizon ' i
“black hole entropy”density = a T



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

S(A) = ext Av

— conjecture
oV =3 4G N |

Extensive consistency tests:

4) Entropy of eternal black hole =

entanglement entropy of boundary CFT & thermofield double
(Maldacena; Headrick)

thermofield boundary
double CFT

extremal surface =
bifurcation surface



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:
Ay
ov —x 4G N

conjecture

Extensive consistency tests:

5) strong sub-additivity: S(AUB) +S(ANB) < S(A) + S(B)
(Headrick & Takayanagi)

-« —> AUB
0(AdS) <« —> < >

7 v

[ further monogamy relations: Hayden, Headrick & Maloney]




Holographic Entanglement Entropy beyond Einstein:
Ay
ov =y 4GN

Recall consistency tests:

4) Entropy of eternal black hole =
entanglement entropy of boundary CFT & thermofield double

5) strong sub-additivity: S(AUB) +S(ANB) < S(A) + S(B)
(Headrick & Takayanagi)

‘ for more general holographic framework, expect
S(A) = ext [Shorizon ]
oV =X / AN

_ , _ gs corrections
includes o' corrections



‘ for more general holographic framework, expect

S(A) = ext +

oV =X (deBoer, Kulaxizi & Parnachev)
(Hung, Myers & Smolkin)
some progress with classical higher curvature gravity:

e note Shorizon IS NOt unique! and Sy 414 iS Wrong choice!
e correct choice understood for “Lovelock theories”

e test with universal term for d=4 CFT: (Solodukhin)
1

1 . . : . :
Suni = log(R/6) o / d?zVh [c (C”“ Gin 051 — KLPK(™ + 5}(;@}(,’;6) - aR]
by

A(AdS) — Y

— universal contribution

thermal entropy \

ROTIZ0N e ——— e e e e e o o o= = o o




‘ for more general holographic framework, expect

S(A) = ext +

oV =X (deBoer, Kulaxizi & Parnachev)
(Hung, Myers & Smolkin)
some progress with classical higher curvature gravity:

e note Shorizon IS NOt unique! and Sy 414 iS Wrong choice!
e correct choice understood for “Lovelock theories”

e test with universal term for d=4 CFT: (Solodukhin)
1 1

Suni = log(R/6) o /Z d?zVh [c (Cij“ Gin 051 — KLPK(™ + 5}(3@}(,26) - aR]

e Seems consistent with Lewkowycz-Maldacena proof

(Bhattacharyya, Kaviraj & Sinha; Fursaev, Patrushev & Solodukhin)
(Chen & Zhang??)



Lessons from Holographic EE:
e compare two theories:

1 12 ;
IO_% dPx/—g [E—FR] ) Spr = 2w A/l
I = ! d°z\/—q 12 R LQ)\ R4 R 4R, R® + R?
1—% TN —g ﬁ"‘ + 5( abed — ab + )
2
—) SJMZE—;T/dgx\/E [1+)\L2R}
p
- 12
e tune: 12 = = (1 VT 4A) A boundary of
2 causal domain

—> both theories have same

extremal
AdS vacuum surface for
: . GB gravit
o clearly Sge is not tied to A
causal structure or even
geometry alone H(AdS) extremal surface for

Einstein gravity



F-theorem: (Jafferis, Klebanov, Pufu & Safdi)

e examine partition function for broad classes of 3-dimensional
guantum field theories (SUSY and non-SUSY) on three-sphere

* in all examples, F=—-log Z >0 and decreases along RG flows

» coincides with our conjectured c-theorem! (Casini, Huerta & RM)

e consider S of d-dimensional CFT for sphere S92 of radius R

« conformal mapping: causal domain D — (static patch of) d.Sy

curvature ~ 1/R and thermal state: p = exp|—2nRH.|/Z

- SEE — Sthermal

o stress-energy fixed by trace anomaly — vanishes for odd d!

 upon passing to Euclidean time with period 27 R :
Spr =log Z|ga for any odd d



F-theorem:
e must focus on renormalized or universal contributions, eg,
sk

e generalizes to general odd d:
el d—1 .
(=) log Z|fm7;te = (=) "2 Suniv =2may.

 equivalence shown only for fixed points but good enough:

uv (Fo)1r = 27 (a3) 1R

(Fo)vv = 27 (a3)uv IR

 evidence for F-theorem (SUSY, perturbed CFT’s & O(N) models)
supports present conjecture and our holographic analysis
provides additional support for F-theorem



